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Abstract

We show here an example of a protocol that satis-
fies anonymity properties while providing strong ACID
(atomic, consistent, isolated, durable) transactional
properties, resolving an open question. This allows us
to provide electronic commerce protocols that are robust
even in the event of message loss and communication
failures. We use blind signature tokens to control val-
ues. We use a separate transaction log to reduce trust
assumptions between the merchant,the consumer, and the
bank.

1 Introduction

Consumer privacy is an important goal of electronic pay-
ment systems. Some researchers have approached this
question by adopting a token-based model. These tokens
are meant to act as a type of currency: they can be used
to purchase a good, but like coins, they do not reveal
the identity of the holder. These systems offer privacy
in making a purchase. Some typical examples of token-
based electronic payment protocols (“digital cash” pro-
tocols) are [2, 3, 7, 5, 15]. These protocols provide con-
sumers with the ability to make anonymous purchases,
purchases which can not be tracked by a bank to iden-
tify the purchaser. A stronger form of anonymity can
be considered — anonymity in which the identity of the
purchaser is hidden from both the bank and the merchant
selling the goods.

But what happens when things go wrong? If the net-
work (or merchant server) goes down during a purchase,
how can users complain about non-delivered goods? If
their purchases are anonymous, how can they prove that
they really did pay and did not receive the goods? How
can electronic judges and merchants adjudicate these
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complaints? How can they determine whether the con-
sumer was really denied the goods, or whether the con-
sumer is just trying to illegitimately acquire merchandise
for free? And how can a consumer obtain satisfaction
when the purchase is anonymous? These questions are
especially important because the Internet today is an un-
reliable network — anyone who has spent some time
browsing the web knows that communications often fail.
Unscrupulous consumers and merchants will certainly
attempt to take every advantage of system failures.

To illustrate the problem, consider the following sim-
plified digital cash protocol: consumers pay for electronic
goods with tokens. These tokens are anonymous, but de-
signed so that if the consumer ever uses the same token
twice, the consumer’s identity is revealed. Suppose a
consumer pays for a good, but before she can receive
acknowledgment that the merchant received payment,
the network fails. Now, what can the consumer do? She
doesn’t know whether the merchant received the payment
or not. She has two basic strategies:

� She can spend the token again, by returning her
token to the bank or spending it with a second mer-
chant. But then, if the first merchant really did
receive the token, she may be creating a race condi-
tion. Whoever gets the token to the bank first will
get the money. Worse, when both tokens do reach
the bank, the consumer will be accused of double-
spending. Now, one can imagine variations on the
digital cash protocol where a consumer might file a
special type of complaint with a bank, but the de-
sign of this variation is non-trivial. Most types of
variations will either reveal the consumer’s identity,
allow a new type of fraud, be subject to ambigu-
ous results if a message is not delivered, or have
other undesirable effects. This topic was addressed
at length in [4, 17, 18].

� She can wait and not spend the money. But in this
case, the consumer has locked up her funds. If
the merchant did not receive her payment, then the
consumer may be waiting for a very long time!

A standard approach to addressing the question of re-

In Proceedings of the 2nd USENIX Workshop on Electronic Commerce, November 1996, pp. 123-133 (Preprint)



liability is the notion of ACID (atomic, consistent, iso-
lated, durable) transactions [10]. In the distributed sys-
tems community, ACID transactions have been widely
adopted as the standard mechanism for realizing dis-
tributed transactions. The payment transactions should
be failure-atomic, so that failures in parts of the system
will not leave the entire system in some ambiguous, in-
termediate state.

How can we interpret these transactions in the context
of electronic commerce? Tygar [17] has proposed us-
ing the classification below. Tygar began by assuming a
model where consumers are purchasing electronic goods
and services that will be delivered over a network (such as
WWW page, for example). For tangible physical goods,
alternative definitions are required to properly satisfy the
atomicity property (motivating a multi-billion dollar in-
dustry in tracked, receipted courier delivery of messages
and packages!) Tygar defines three classes of atomicity
for electronic goods.

� Money atomic transactions feature atomic transfer
of electronic money — the transfer either completes
entirely or not at all. In money atomic protocols,
money is not created or destroyed by purchase trans-
actions.

� Goods atomic transactions are money atomic and
also ensure that the consumer will receive goods
if and only if the merchant is paid. Goods atomic
transactions provide an atomic swap of the elec-
tronic goods and funds — similar to the effect of
“cash on delivery” parcels.

� Certified delivery protocols are goods atomic and
also allow both the consumer and merchant to prove
exactly what was delivered. If there is a dispute, this
evidence can be shown to a judge to prove exactly
what goods were delivered.

Using this classification, we can see that the simpli-
fied digital cash protocol described above is not money
atomic. The obvious question is: are anonymous atomic
transactions possible? [17] This has been an open ques-
tion.

Our first attempt to solve this question would be to use
standard techniques to make a digital cash transaction
atomic. The standard method for doing this is two-phase
commitment [1, 9, 10, 11, 12]. In short, in two-phase
commitment, one party assumes the role of transaction
coordinator. That party knows and records the identities
of all other parties in a non-volatile log. Each of the
parties records its state before the transaction begins. As
the transaction moves forward, various parties complete
their required computation. Before changing the perma-
nent store of those values, the parties send a message to
the coordinator indicating that they are ready to commit.

(Alternatively, they may abort the transaction by sending
a negative message to the coordinator.) After receiving
ready messages from all parties, the coordinator issues
a commit message to all parties, causing the transaction
to become permanent. Alternatively, if the coordinator
receives an abort request or if the coordinator can not
establish contact with one of the parties, the coordinator
can abort the transaction by sending an abort message;
in that case, all parties reverse the computation that they
conducted towards the transaction.

So, as we see, the two-phase commit protocol requires
that at least one party participating in the protocol (the
transaction coordinator) knows the identity of all the par-
ties involved. Additionally, two-phase commit assumes
a fail-stop fault model, where the parties to the protocol
can fail by stopping due to a crash, but not by lying or oth-
erwise trying to cheat. In electronic commerce protocols,
of course, we must be able to tolerate arbitrary Byzantine
faults; one way to do this is to provide sufficient auditing
information to detect these faults and later assign re-
sponsibility. This makes the standard two-phase commit
protocol inappropriate for use in anonymous electronic
commerce systems.

An alternative approach to this problem was attempted
by Jakobsson [14], where the payment protocol is divided
into two halves. Here, the digital cash is “rip-spent”: af-
ter the first half of the spending protocol, the consumer
has committed to buying from the merchant but has not
yet spent the money — some partial information is trans-
ferred, so that if the consumer attempts to abort the trans-
action, the digital cash is either lost (becomes unsable), or
the identity of the consumer is revealed. This approach,
unfortunately, is not satisfactory: each of the half pro-
tocols themselves may be interrupted, leaving the digital
cash again in an ambiguous state.

1.1 Our contribution

Let us return to the open question mentioned above: Can
anonymous transactions be atomic? Some researchers
have speculated that the answer is negative. However,
in this paper, we reverse this commonly held belief by
answering the question affirmatively. We present a set
of protocols for electronic commerce transactions which
combines anonymity and atomicity while requiring very
limited trust assumptions. We prove the goods atomicity
properties of our protocols. For certified delivery we
provide two variations:

� one-sided certified delivery where the consumer
can prove what goods were delivered in case adju-
dication is needed (e.g., the goods do not match their
description). The merchant is also guaranteed to be
paid if and only if the consumer successfully obtains



the electronic goods. On the other hand, the mer-
chant can not prove that the consumer successfully
received the goods promised. (This is the protocol
presented in Section 3.3. As we argue below, if the
burden of proof is on the consumer, then this method
suffices to allow the consumer to prove the results
of the transaction.)

� two-sided certified delivery which provides proof
of the delivery of specific contents to both parties.

As we discuss below, there are tradeoffs between these
two properties — two-sided certified delivery still keeps
the identityof the consumer anonymous, but it does reveal
some information about a cryptographic key used by the
consumer. (This normally is not a problem since a con-
sumer is expected to choose unique cryptographic keys
for each transaction. However, we do discuss reusable
keys below in Section 8.1, and if this option is chosen,
there is a shade of privacy lost. This variation is presented
in Section 8.6.)

It is important to emphasize that we have not designed
this protocol with performance considerations in mind.
The efficiency of digital cash protocols is already con-
troversial [16, 17] and our mechanisms also require large
amounts of computation. The intellectual contribution
of this paper lies in showing that the widely held belief
that atomic transactions can never be anonymous is not
correct.

Section 2 explains our basic cryptographic and system
assumptions. Section 3 presents a high level overview
of the design of our protocols, followed by a more de-
tailed description of our protocols. Section 4 informally
analyzes the correctness of the protocols, and gives an ar-
gument for verification of the one-sided certified delivery
property. Section 5 describes the logging requirements
for all the parties in our system. Section 6 details the pri-
vacy properties of our system, giving an exhaustive list
of the types of information available to the various par-
ties. In Section 7, we review the basic trust assumptions
required by our system and show that strengthening these
assumptions leads to simplified versions of the system.
Section 8 presents several variations to our basic proto-
cols, allowing partial spending of the withdrawn amount,
greater efficiency by permitting public key reuse, etc.
Finally, Section 9 concludes the paper.

2 Assumptions

In designing our protocols, we made a variety of assump-
tions about the capabilities of the participants and made
use of several cryptographic tools. This section describes
our assumptions and introduces some of the important
tools which will be used.

Four parties participate in our protocol: a consumer C,
a merchant M, a bank B, and a transaction log L. Now,
of course, our parties are designed to allow multiple,
scalable, simultaneous transactions that do not interfere
with each other — this is the isolation requirement in
ACID transactions. Thus, there can be many more than
four parties — but in a single transaction, there will only
be four parties.

All parties can perform basic cryptographic operations,
e.g. cryptographic hash computation, signature computa-
tion and verification. All parties have well-known or
verifiable public keys. All signatures can be verified by
the receiving party.

To justify the claim of anonymity, the identity of the
consumer must be protected from all other parties (that
is, we make assumptions of strong anonymity).

We assume that the communications channels (in par-
ticular those between the consumer and the other parties)
are anonymous, i.e. no information about the identity
of the consumer is gained by communicating with the
consumer. Now, in practice, this may be a questionable
assumption — can’t a merchant or a third party infer the
consumer’s identity through the TCP/IP return address on
his packets? Supporting this assumption in an implemen-
tation may involve a fifth party, an anonymizer, which the
consumer trusts not to reveal identity information.[8]

To provide atomicity, a modified, cryptographic ver-
sion of the two-phase commit protocol is implemented
using an external, publicly accessible transaction log.
The transaction log receives and records messages, and
then reproduces the recorded messages. The log local-
izes the global commit decision to a single entity. The
log also acts as a time-keeper, determining when to abort
transactions due to a time-out.

Communication channels are assumed to be secure.
The method used to implement this security (e.g. public
keys) is not important to the functioning of the protocol.
Some messages could be left unsecured, improving ef-
ficiency at the cost of a limited loss of privacy, but the
details of this are not currently addressed.

Chaum [6] made a critical discovery that enabled the
idea of digital cash to take place: blinded tokens. The use
of blinded tokens is essential to our protocols. A token
is a piece of data which can be created only by a specific
issuer. Creation of a token without assistance from the
issuer should be computationally infeasible. Blinded to-
kens are created by an interaction of a consumer with the
issuer (the bank). After the interaction, the consumer has
knowledge of a token which the issuer can not specifi-
cally identify. That is, the issuer does not know which
token (from the range of valid tokens) the consumer has
obtained. The tokens used in this protocol will have the
additional property that each token, denoted Q�, speci-
fies the public half (including modulus), denoted Q, of a



public key pair.
It is assumed that the consumer has an account with the

bank, and that the bank can mint blinded token currency.
This requires the bank to maintain token information as
detailed in Section 5.

The transaction protocol given assumes minimal
preparation and delivery costs for the goods. Goods must
be prepared and delivered, although not in a usable form,
prior to any guarantee of payment to the merchant.

Message signatures are computed on hash values of
the plaintext, and then appended to the plaintext to form
a signed message. This is relevant in the first step of
the purchase protocol, 1, for efficiency reasons. It is also
relevant in the second step, 2, so that the bank can read Q�

in order to determine Q. This assumption can be dropped
with minor changes to these steps.

3 Protocols

In this section, we first give a high level overview of our
anonymous atomic transaction system design, and then
describe our abstract protocols.

Critical to our system is the use of a blind signature in
the withdrawal protocol. Here, the consumer obtains a
blinded token from the bank as a result of withdrawing
money from the consumer’s account.

Unlike previous works where the blind-signed data is
a token which represents value, in our protocol the pub-
lic key of a newly generated public/private key pair is
signed; this certifies a trapdoor function rather than data
to be disclosed in the purchase protocol. This effectively
provides a temporary, anonymous certificate of owner-
ship of the withdrawn amount. The private key of the
key pair is known only to the consumer, and it is used
with the certificate to anonymously authorize transfers of
the withdrawn amount to a merchant’s account. Autho-
rization messages signed with this key are used in our
transactions to signal readiness to commit to a purchase
transaction, and to serve as part of the “paper trail” to
prove that the token has been expended.

In the purchase phase, the merchant delivers encrypted
goods along with a signed contract providing the goods
description and the price. If the consumer finds the con-
tract acceptable, readiness to commit is sent to the bank
in the form of a signed message (using the above blind-
certified key) to authorize the transfer of funds if the
transaction commits, and then the bank similarly signals
its readiness to the merchant with a message promising
an anonymous deposit into the merchant account when
the transaction commits. The transaction commits when
the transaction log records a message from the merchant
which contains the merchandise key.

Timely delivery of the merchant’s message to the trans-

action log results in the transaction committing, thereby
crediting the merchant’s account and releasing the mer-
chandise key to the consumer. If the merchant’s message
does not arrive before the expiration time, the transaction
aborts.

Note that unlike standard two-phase commit, there is
no central transaction coordinator; instead, the various
parties’ readiness to commit are determined using non-
repudiable messages in a distributed, cascading fashion
as explained in section 4.

Next, we give a detailed description of the withdrawal
and purchase protocols.

3.1 Notation

We use the following notation to describe steps in a pro-
tocol.

1. X ! Y messagetext — label

Here, the step number of the message is given (this is the
first message in the protocol), the message is sent from X
to Y, the text of the message is messagetext, and the step
is named label.

We use the notation (message)p to indicate the message
is signed with public key p, and Ek(field) to indicate that
a field is encrypted with symmetric key k.

3.2 Withdrawal and Exchange

The consumer generates a public key pair to use with each
withdrawal. The public half of the pair is used to form
blinded-request. The steps of the this protocol are given
in Figure1. At the end of the protocol, the consumer can
form the token Q� by unblinding signed-blinded-request.
The contents of Q� specify the public key Q (including
modulus), whose private half is known only to C.

A token may be anonymously exchanged for a new
token in a similar fashion by replacing the consumer’s
public key with the token’s single-use key. The token
exchange steps are given in Figure 2.

The following is an example protocol using a specific
blinding technique. The bank has an RSA public key
pair with modulus Nt, public exponent 3, and private
exponent t = 3�1 mod �(Nt). The bank has also made
public a cryptographic hash function h.

1. C generates a desired public key pair Q; q with mod-
ulus Nq

2. C selects a random number r mod Nt

3. 1. C ! B h(Q) � r3 mod Nt

4. B computes (h(Q) � r3)t
� h(Q)t

� r mod Nt

5. 2. B ! C h(Q)t
� r mod Nt



W1. C ! B (blinded-request)c — withdrawc

W2. B ! C signed-blinded-request — withdrawb

Figure 1: Token withdrawal protocol.

E1. C ! B Q�; (blinded-request)q — withdrawc

E2. B ! C signed-blinded-request — withdrawb

Figure 2: Token exchange protocol.

6. C computes r�1 mod Nt and then h(Q)t mod Nt

7. C has Q� = Q; (h(Q)t mod Nt)

The bank may use multiple signature keys for its blind
signature, corresponding to different brands of tokens.
The brand of a token determines its denomination and its
withdrawal date. Having token brands is important for
limiting the data logging requirements for the bank: until
a brand of blinded token is withdrawn from use, the bank
must maintain a database containing auditing information
proving that expended tokens have been spent in order
to prevent double spending (see Section 5). By a priori
declaring that tokens will be worthless after the brand
withdrawal date, the bank limits its data logging obliga-
tions; furthermore, brand withdrawal will also limit risk,
since it limits the amount of time attackers will have to
attack the key. Next, we discuss how the blind-signed
token obtained above is used in the purchase protocol.

3.3 Purchase

Some negotiation of the transaction contract is assumed
to take place prior to the transaction steps listed below.
Given the current approach, the method of this negotia-
tion has no direct bearing on the protocol. As above, each
message is annotated with a mnemonic which describes
the purpose of the message, and which will be used to
refer to the message. For example, authorization denotes
the authorization action by the party identified in the sub-
script. The protocol is an example of linear commitment
is the sense defined in [10]. The steps of the purchace
protocol are given in Figure 3.

In step 1, the merchant sends a signed copy of the con-
tract and goods to the consumer. It is essential that the
contract (contract) contain a description of the goods in
order to provide one-sided certified delivery. The goods
(goods) are encrypted with a single-use private key (k),
referred to as the merchandise key. The merchandise
key will be revealed to the log and the consumer if the

transaction commits. The message includes a transaction
number (n) generated by the merchant which should be
different from any previously generated transaction num-
ber from the same merchant. A duplicate number could
be detrimental only to the merchant. Upon receipt, the
consumer verifies that the contract is acceptable.

In step 2, the consumer decides upon an expiration time
(expiration) for the transaction, after which the transac-
tion is considered to have failed, and the token can be
reused or replaced. The consumer also selects a transac-
tion log (L) for the transaction. Both the bank and the
merchant have effective veto power over the consumer’s
selection of L and expiration, since they will not provide
authorization before knowing these values. The con-
sumer then signals to the bank its readiness to commit
by specifying the transaction and the token and key to
be used (Q�). The bank must verify the validity of Q�,
including a check against reuse. The bank then uses Q�

to check the message’s signature.

In step 3, the bank tells the merchant that it and the con-
sumer are ready to commit, and includes in the message
the value of the token (value) to be used for payment.
The merchant verifies the transaction number is correct
and that the token value, log identity, and expiration time
are acceptable.

In step 4, the merchant commits to the transaction by
sending the merchandise keyto the log, along with the
time-out, transaction number, and a signature. Upon re-
ceipt, the log verifies that the expiration time (expiration)
has not passed.

In step 1, the log records the merchant’s commitment
if it was received before expiration. The precise method
of distribution of the recorded message is not important
to determining atomicity properties, but some method for
providing timely, good-faith delivery to the consumer is
of practical importance. Any party can use this log record
in conjunction with other signed messages obtained dur-
ing the transaction to force the bank to transfer funds
or to obtain the goods decryption key, completing the



P1. M ! C (n; contract;Ek(goods))m — goodsm

P2. C ! B (n; expiration;M;L;Q�)q — authorizationq

P3. B ! M (n; expiration;M;L; value)b — authorizationb

P4. M ! L (n; expiration; k)m — authorizationm or

P5. 1. L ((n; expiration; k)m)l — commit

2. L ((n; expiration;M; failed)l — abort

Figure 3: Purchase protocol.

transaction.
In step 2, which may occur only after the expiration,

the log generates a negative authorization at the request
of the consumer or the bank. This indicates that no
4 for the given merchant and transaction number was
received prior to the given expiration time. This allows
the token to be freed for reuse or exchanged following a
failed transaction; after abort is generated, the purchase
protocol terminates.

4 Correctness and Atomicity

The atomicity properties of the protocol rest on the atom-
icity of the transaction log’s non-repudiable commit (or
abort). The transaction log will eventually produce ex-
actly one of commit or abort for any transaction. The
other parties can use this, along with other data gathered
during the course of the transaction, to prove that the
transaction did (or did not) complete. Conversely, if a
party claims that the transaction did (or did not) com-
plete, it must be able to provide this proof to justify its
claim to other parties.

The transaction protocol follows the two-phase commit
model, however, the authorization actions of the parties
are cascaded. First, the consumer authorizes the bank to
lock the token to the transaction. Next, the bank autho-
rizes the merchant to transmit the key to the log. Then,
the merchant sends the merchandise key to the log, au-
thorizing the log to commit the transaction. Finally, the
log issues the global commit. Accountability is simi-
larly cascaded so that a party can be held accountable
exactly when it has made an authorization and the trans-
action commits. For example, if the bank authorized
the merchant to deposit the key (authorizationb) with-
out having received the consumer’s authorization to lock
the token (authorizationq), then the bank could be held
accountable by the merchant (who would have commit
and authorizationb), but the consumer could not be held
accountable by the bank (which would have commit but

not authorizationq).
The merchant can use commit and authorizationb to

prove that the bank should credit the merchant’s account
with the value of the token. This provides the bank with
commit. Possession of commit assures the bank that it
will not be subject to a claim that the transaction has
failed, since such a claim would require abort.

The bank can use commit and authorizationq to justify
(to the consumer) marking the token spent and denying
reuse or replacement. The consumer can demand this
proof, requiring the bank to produce commit, which con-
tains the merchandise encryption key, thus giving the
consumer access to the goods. Note that in practice, as-
suming good faith, the consumer will acquire the key
prior to this, and demand of proof will not be necessary.

The consumer can use abort and q to demand that the
token be unlocked. This provides the bank with abort.
Possession of abort assures the bank that it will not be
subject to a claim that the transaction has completed,
since such a claim would require commit.

Finally, the consumer can use commit and goodsm to
prove the contents of the delivered goods. The goods
encryption key, the encrypted goods, and the description
of goods (contained in the contract) have all been signed
by M, and commit proves that the transaction completed.
Some means for review of goods by an outside authority
should be available to establish claims of incorrect or
fraudulent goods delivery.

From a correctness standpoint, it is important to ex-
amine the use of combinations of signed, non-repudiable
messages employed above. Any given commit (or abort)
is valid for only one combination of n, expiration, M,
and L; it is considered to be compatible only with the
messages which agree on those values. The one excep-
tion is that the certificate goodsm does not mention L
or expiration, and thus must agree only on n and M to
be compatible. At each step, a party provides a signed
message which can be used to prove that party’s account-
ability with exactly the same range of commit messages
as it would use in proofs of the preceding party’s ac-



countability. Thus, if a party is held accountable for the
transaction, then it is provided with the non-repudiable
messages that it needs to hold the previous party account-
able as well.

5 Data Management

Our protocols rely heavily on the ability of the partic-
ipants to hold each other accountable by maintaining
records of each other’s non-repudiable messages. We
now discuss the record keeping required of the different
participants in the protocol.

The consumer stores all data and messages received
on all active tokens or transactions. This includes the
token (Q�), the signed contract and goods (goodsm), and
finally the global commit (commit). The consumer can
use goodsm and commit to prove the contents of the goods
and the contract. If the goods are satisfactory, then the
consumer may discard all data on the transaction.

The merchant stores the bank’s authorization
(authorizationb) and then the global commit (commit).
These are used to prove a completed transaction to the
bank, which then issues a credit to the merchant. Once
the bank has issued the credit, the merchant may discard
all data on the transaction.

The transaction log stores the merchant’s authorization
(authorizationm) whenever it produces a global commit
(commit). This information may be discarded after some
delay following the transaction expiration (expiration).
The delay should be long enough that denial of access
to the log for that duration is extremely improbable. It
is also important that the log not generate abort for any
transaction with an expiration which has been exceeded
by more than this delay period.

The bank must maintain a variety of transaction infor-
mation to correctly manage the protocol. The bank must
have a selection of brands of tokens. The brand of a to-
ken specifies the method used to create the token as well
as the properties (e.g. denomination) associated with the
token. Different brands of tokens are used to cover the
range of desired token properties, particularly denomi-
nations and expiration dates. Since the bank knows the
brand of the blinded token withdrawn by a consumer,
the denominations and expiration dates should have a
coarse granularity so that many tokens of each brand are
issued. The bank must maintain a database of processing
information for each brand of tokens it issues.

The database for a brand of tokens tracks the status of
tokens of that brand. During the transaction phase, the
bank receives an authorization (authorizationq) to com-
mit a token to a transaction. This message is logged in
the database, so that attempts at token reuse can be de-
tected. Once the bank receives the the commit (commit)

or abort (abort) for a transaction, it stores that as well.
If the transaction completes, the bank should keep both
authorizationq and commit until some period following
the expiration for the brand of token used. If the trans-
action aborts, the bank need keep only abort. In order to
limit the time the bank must store abort records, transac-
tion claims by the merchant should have a limited time of
validity, perhaps some fixed period following expiration.
This period should be sufficiently long to allow time for
reasonable delays or for outside party conflict resolution.
If the period is based on expiration, then the bank may
decide to not authorize any transactions with excessively
late expiration values.

6 Privacy

An important consideration in any transaction is what
information is revealed about the participants and to
whom. In this section, with the aid of a table, we de-
tail what information is obtained by various agents.

Table 1 gives the types of information available to
various parties in the style of [4]. The entries for the
merchant, the consumer, the bank, and the transaction
log are based on their original information plus any in-
formation received over the course of a transaction. The
information for law enforcement with warrant assumes
record-keeping on the part of the bank, and law enforce-
ment’s knowledge of the item is dependent on merchant
records. The electronic observer’s knowledge is based
upon performing traffic analysis on the encrypted mes-
sages. In the basic protocol, the transaction log is pub-
licly readable, and thus an observer can also obtain full
information about the merchant’s identity.

7 Trust

In this section we discuss the assumptions of trust neces-
sary for our protocols. We then consider two modifica-
tions based on alternative trust assumptions.

While there are many places where a dishonest partic-
ipant or saboteur could delay progress or prevent com-
mitment (e.g. by disrupting a communication channel),
there is only one location where a corrupt coalition may
benefit illegitimately. For this reason, there is one trust
assumption required by the protocol; the merchant must
trust the log to record received messages. If the log, in
collusion with the consumer, fails to produce commit, but
simply passes k (which is contained in authorizationm)
to the consumer, then the consumer will gain access to
the goods while the merchant will not have commit, and
thus will not be able to demand payment. In practice, if
the time to expiration is sufficiently long and the log is
accountable for responsiveness, this sort of fraud might



Information Merchant Consumer Date Amount Item
Party

Merchant Full None Full Full Full
Consumer Full Full Full Full Full
Bank Full None Full Full None
Transaction Log Full None Full None None
Law Enforcement
w/warrant Full None Full Full Full
Electronic
Observer Partial None Full Partial None

Table 1: Information Available with Anonymous Certified Delivery

be detected. Trusted outside observers could notice that
the log is failing to respond in reasonable time and take
some action.

This trust assumption against a log-consumer coalition
is a reason for the existence of the transaction log as a
separate entity. Before he commits to the transaction,
the merchant knows the identity of the log, and therefore
he need only commit if the specified log is trusted. In
practice, the selection of the log might be decided in the
initial negotiation between the consumer and merchant.
If the merchant is assumed to trust the bank not to con-
spire with the consumer, the transaction protocol can be
simplified by merging the bank and the log.

The second reason for a separate transaction log is the
consumer’s desire for timely access to the goods. From a
practical standpoint, the consumer must trust that the log
will not intentionally delay passing the key to the con-
sumer. Although the key must eventually be revealed to
the consumer for the bank to justify crediting the trans-
action, this would likely take place on a much larger time
scale than would be desirable for key delivery. If the log is
required to satisfy some responsiveness guarantees, then
limited delays can be enforced with the assistance of a
trusted outside party. If the consumer is assumed to trust
the merchant to make timely delivery of the key (given
that it must be delivered eventually), then the transaction
protocol can be simplified by merging the merchant and
the log.

8 Protocol Variations

The protocols presented in this paper form the ground-
work for many variations which alter or extend their func-
tionality. In this section we describe modifications to
support key reuse, multiple token transactions, partial to-
ken spending, cryptographic time-stamps, a non-public
transaction log, and full certified delivery.

8.1 Reusable Customer Keys

One variant of these protocols permits reuse of Q at the
expense of allowing the bank to link repeated uses of Q:
instead of blind signing h(Q), the bank blind signs h(Q; s),
where s is some serial number chosen by the consumer.
In this fashion, many tokens (Q� = Q; s;h(Q; s)t) can all
specify the same key (Q). Only the bank sees Q (in 4),
and so only the bank can link repeated uses of the same
key to each other.

8.2 Multiple Token Transactions

To pay for items of arbitrary values, we may need
to combine several tokens in a single transaction. In
this case 2 must contain the various tokens, and be
signed with all keys associated with those tokens. Let
bQ� be a list of tokens (possibly of different brands)
(Q1;h(Q1)t1); . . . ; (Qm; h(Qm)tm ) and let bq be the list of
corresponding private halves q1; . . . ; qm. We extend the
subscript notation to vectors to indicate signing the plain-
text with each private key in the vector. The new 1 step
would then be

1. C ! B (n; expiration;M;L; bQ�)
bq

authorizationq

Multiple token transactions combine well with the use of
one key for many tokens as discussed above, since this
might reduce the number of signatures needed.

8.3 Partial Token Spending

The protocols may also be changed to support spending
tokens in a check-like fashion. By including a particular
value in 1, a consumer can authorize that only a part
of a token’s value is spent. The remaining value of the
token may be exchanged for new tokens, or may be used
in further purchases until all the value is used. Partial
spending of tokens is compatible with both key reuse and
multiple token transactions.



8.4 Cryptographic Time-Stamps

An important function of the log is to time-stamp the ar-
rival of 4. The time-stamps used should include clock
time information, since transaction authorization expira-
tion will be in terms of real time. In order to reduce
the trust that the parties must place in the log’s hon-
esty, cryptographic time-stamping [13] may also be em-
ployed. Cryptographic time-stamping will give the ad-
ditional property that if the log is compromised, the log
entries made prior to the time of compromise may still be
trusted.

8.5 Encrypted Log Entries

In order to facilitate anonymous key acquisition by the
consumer, the transaction log is publicly readable. While
the logged message (commit) does not contain sensitive
information, it might be used to determine the merchant’s
identity. Extra privacy could be supported by including
a secret key (s) in the purchase messages. In fact, if n
is required to be randomly selected and is sufficiently
large, then n could be used as this secret key. The logged
message would be encrypted using the secret key so that
only the parties of the transaction could read (commit).
To support efficient lookups, a function on known data
could be used to generate indices for log entries (e.g.
Es(M)).

For even greater privacy, the log could be left unaware
of the secret key and simply time-stamp, sign, and record
any received messages (and their indices). This would
require a modification of the abort message to indicate
that no message with the given index was available at a
specified time. Additionally, expiration should be left in
plaintext so that the log can know not to publish messages
with timestamps greater than their expiration values.

8.6 Two-Sided Certified Delivery

The last and most intricate variation on the protocols
is the addition of support for two-way certified deliv-
ery, which is detailed in Figure 4. Our protocols provide
one-sided certified delivery; only the consumer can prove
what goods were delivered. If the burden of proof is ex-
pected to fall on the merchant, then the purchase protocol
can be changed to provide full certified delivery at the
cost of extra complexity. First, we introduce the notation
[M]x to indicate the signature of M with key x without
the plaintext, e.g., h(M)t mod Nt for RSA signatures. If
we provide the merchant with Q and [goodsm]q, then the
merchant will be able to prove what goods were deliv-
ered to the holder of Q. The merchant must additionally
be able to prove that the holder of Q is the consumer
for whom the transaction was processed. Our purchase
protocol for certified delivery follows:

The new step, 2, supplies the merchant with the sig-
nature by q of the goods description. The inclusion of
Q in 3 enables the merchant to link Q with the payment
to be received. The logging of Q in 1 associates Q with
the completed transaction. To increase the trustworthi-
ness of this association in case of corruption by one or
more parties, the cryptographic time-stamping variation
described above should be employed. In variants where
Q may be reused, the log entries should be encrypted
to prevent unassociated parties from linking the repeated
uses of Q.

9 Conclusion

In this paper, we presented protocols for achieving
anonymous atomic transactions, answering an open
question[17].

As stated in the introduction, these protocols are not
being proposed for use in their current form. Both ef-
ficiency concerns and legal concerns — portions of the
protocol may violate financial institution recordkeeping
requirements on transactions over $100 stipulated by the
Money Laudering Act (12 USC §1829) in the US — must
be addressed before such a protocol can be used. But an
existence proof of an anonymous atomic protocol is an
important step towards providing reliable, secure elec-
tronic commerce on the Internet, while maintaining indi-
vidual privacy. Our variant protocol designs demonstrate
the range of anonymous, ACID transaction available.

We hope that researchers and system designers in the
electronic commerce community will further explore the
technical feasibility of providinganonymous atomic elec-
tronic money transactions in real systems. We believe
that these are fascinating technical issues and that in some
contexts anonymous and reliable transactions will have
important social value.
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