
ABSTRACT

We propose two new families of protocols for certified
electronic mail. Certified electronic mail enables two
mutually suspicious users to exchange a receipt for elec-
tronic mail. One family of protocols, the believers’ proto-
cols, use a trusted third party. The second family, the
skeptics’ protocols, use no third party. Our protocols are
secure in a very strong sense; the probability of one party
cheating can be made arbitrarily small. The protocols pro-
vide a practical example of the use of various innovative
cryptographic techniques, including digital signatures, bit-
commitment, and zero-knowledge interactive proofs.
These protocols can be implemented in modern communi-
cation networks.

INTRODUCTION

Sue Sender wants to send electronic mail (e-mail) to Rob
Recipient. Sue wants to obtain a receipt from Rob in return
for her e-mail. Sue can send Rob Certified Electronic Mail
(CEM). CEM supports ordinary e-mail with the addition
that the recipient must sign a receipt in exchange for the
received e-mail. If an independent third party is witness to
the exchange, a proof of mailing will also be available for
Sue. Both the receipt and the proof of mailing are depen-
dent on the content of the e-mail received or sent. CEM is
the digital equivalent of the post office providing certified
mail (proof of mailing) and return receipt service for ordi-
nary paper-based mail. However, both the receipt and the
proof of mailing in the paper-based model are independent
of the content of the letter. Dependency of the receipt and
the proof of mailing on the content of the e-mail is one of
the advantages of CEM over ordinary paper-based certi-
fied mail with return receipt.

CEM is an end-to-end service which can be implemented
at the application layer of the International Standards
Organization’s (ISO) Open Systems Interconnect (OSI)
Reference Model [17]. CEM can also be implemented on
top of Privacy Enhanced Mail (PEM) [20, 19, 2, and 18].
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In doing so, CEM users could enjoy confidentiality,
authenticity, integrity, and non-repudiation of message
origin in addition to proof of mailing and non-repudiation
of message receipt. Briefly, confidentiality protects trans-
mitted messages from unauthorized disclosure. Integrity
ensures that the message content is not modified during
transmission. Authentication is simply the assurance that
the remote entity sending the message is correctly identi-
fied. Non-repudiation comes in two flavors, non-repudia-
tion of message origin and non-repudiation of message
receipt. The former protects against the sender denying
transmission of the message while the latter protects
against the recipient denying receipt of the message. Proof
of mailing allows the sender to prove to any third party
that the sender did in fact send the message to the recipi-
ent.

As part of a larger effort to introduce privacy enhanced
mail within Bell Communications Research, the first
author is planning to implement the Believers’ CEM pro-
tocol, described in this paper. This prototype implementa-
tion will demonstrate the feasibility of the protocol in
practice.

We present the requirements, common assumptions and
our approach in implementing CEM protocols in the next
section. This is immediately followed by the detailed
description of our two approaches in providing CEM pro-
tocols. In our first approach, we use a trusted third party
during the exchange of the CEM and the receipt. In the
second approach, we carry out the exchange of the receipt
for the CEM independent of any third party. We also sug-
gest some applications of CEM followed by concluding
remarks at the end of this paper.

TERMINOLOGY

We use the following terminology in this paper.

Conventional cryptosystems such as the Data Encryption
Standard (DES) are also referred to as private-key or sym-
metric cryptosystems. There is a single key, simply called
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the key, used in the encryption/decryption process which
must be kept secret between the communicating parties.

We use the terms asymmetric and public-key cryptogra-
phy interchangeably to refer to cryptographic algorithms
which use a pair of keys in the encryption/decryption pro-
cess as appose to the single key used in conventional cryp-
tosystems. The two components of the key pair are
referred to as the secret and public keys.

SOLVING THE CEM PROBLEM

Requirements

Sue and Rob are mutually suspicious of each other. Either
party may attempt to cheat at any time during the
exchange of the receipt in return for the CEM. Sue would
like to be able to receive a proof that she had indeed sent
the CEM to Rob. Rob may want to receive the CEM with-
out signing a receipt for it. Sue cannot force Rob to sign a
receipt unwillingly. However, once willing, Sue wants to
prevent Rob from being able to use her CEM until he signs
for it. Rob on the other hand, wishes to sign a receipt only
when he receives Sue’s CEM. The receipt must be depen-
dent on the content of Sue’s CEM. This is to prevent either
party from later claiming to have received or sent a differ-
ent CEM. Only Rob should be able to generate receipts
that are signed by him. Sue should be able to show the
receipt to any third party and convince them that it is a
signed receipt from Rob for the original CEM. Receiving
receipts for past communication with Rob should not
reveal anything to Sue with which she would be able to
generate receipts for future communications. In our proto-
cols, to violate the above conditions and cheat, one would
need to either solve a computationally intractable problem
or correctly guess a sequence of bits out of a large number
of possibilities.

Common assumptions for CEM protocols

There are a number of underlying common assumptions in
our protocols which are presented in this section. Each of
the two protocols presented in this paper have additional
assumptions which are listed in the appropriate section
under that protocol.

I - Equal computational power and knowledge of algo-
rithms

We assume that both the sender and the recipient have
equal computational power and knowledge of algorithms.

II - Secure and privacy enhanced communication

All messages exchanged in our protocols need to be pro-
tected against eavesdropping by passive intruders and
against tampering by active intruders. In other words, we
need to secure the confidentiality and integrity of each
message. This task can easily be accomplished by sending
each message as a protected message using PEM. We
therefore rely on the secure communication provided by
the chosen underlying mechanism such as PEM. This
assumption simplifies the presentation of the protocol.

III - All messages delivered in bounded time with no
denial of service

A practical assumption is to place an upper bound on the
expected message delivery time. This implies that all mes-
sages will eventually get delivered in bounded time.
Should a message be lost or stolen off of the network, the
originator will continue to resubmit the message until it is
delivered. This way we avoid the denial of service prob-
lem, except when the network permanently fails. It is the
responsibility of the originator to make sure that sent mes-
sages are delivered. The originator could, for example,
request and wait for an acknowledgment. If the acknowl-
edgment is not received after a specified time-out period,
the message is retransmitted. The retransmission can also
be done transparent to the sender at the transport layer of
the communications network, or even at the application
layer, using special user agent applications.

IV - Functional key distribution center

Users’ signature should be universally verifiable. This
requires a functional key distribution center for practical
reasons. Any user on the network should be able to obtain
the public component of another users’ cryptographic key.
The X.500 directory services [7], recommended by the
Consultative Committee on International Telephony and
Telegraphy (CCITT), promises to provide the means for
the required key distribution center. The required public
key distribution and retrieval can also be achieved through
extensions of the Domain Name System (DNS), or cre-
ation and use of socket-based and/or mail-based certificate
responders.

V - One-way functions exist

A fundamental assumption made is that one-way functions
do exist. One-way functions are functions that can be eas-
ily computed but are difficult to invert. This assumption
has not yet been proven. However, functions do exist that
are hard to invert and are conjectured to be one-way.
These include factoring a large composite number (a prod-
uct of two large primes), and discrete log modulo a large
randomly chosen prime [15]. Several assumptions follow
directly from Assumption V which we will state as corol-
laries below:



A - Secure pseudo-random generators exist

B - Secure private-key or symmetric cryptosystems exist

C - Secure digital signature schemes exist

The existence of one-way functions is a necessary and suf-
ficient assumption for the existence of secure pseudo-ran-
dom generators [15], secure private-key cryptosystems
[11], and secure digital signatures [25]. These secure cryp-
tographic primitives are the building blocks of our proto-
cols. For a discussion on the limits of the provable
consequences of one-way functions see [27 and 16].

Approach

In general, the CEM problem makes sense only in the
presence of at least three parties—the sender, the recipient,
and a third party. If only Sue and Rob existed in the world,
it makes no sense for Sue to require Rob to sign a receipt
for her CEM. The receipt is useless unless there is a third
party which can verify the receipt and hold Rob responsi-
ble for his signature. The third party settles any disputes
that may arise during or after the exchange. There can be
more than one third party playing different roles during
and after the exchange. While the existence of a third party
is necessary by definition, its nature of presence and
amount of involvement may vary. For example we distin-
guish between on-line computerized third parties (or
server daemons) which are available over the communica-
tion network and off-line human judges that can act as a
third party. The amount of involvement of a third party
also varies from fully involved to not involved during the
exchange. In the former case the third party is essential
during the exchange, while in the latter case the third party
will only enforce the legal consequences after the
exchange has taken place.

In the absence of a trusted third party, the CEM problem is
related to exchange of secrets and contract signing, both of
which are examples of symmetric exchange problems. In
symmetric exchange problems, there are two parties to the
exchange. Both parties in the exchange have information
of equal value to exchange. The term “equal value” is used
loosely and can apply to a wide range of applications. In
contract signing, for example, the information of equal
value are the signatures of each party to the contract. Both
parties need to verify the information they receive from
the other party. Gradual and verifiable release of informa-
tion can approximate a solution to symmetric exchange
problems. By gradual we mean that both parties divide
their respective information into small parts. They then
take turns in a serial exchange of these parts. Without loss
of generality, consider the example in which each part is
one bit. Each bit should be verifiable by the other party to
avoid cheating by sending junk bits. We say that this

approximates a solution since the first party to begin the
serial exchange is always in a disadvantage in having
revealed one bit of information more than the other party.
This may result in a 2:1 computational disadvantage for
the party who started the exchange. If there exists a poly-
nomial-time algorithm to deduce the missing bits of the
information from the partial information provided in the
middle of the exchange, both parties can obtain the other
party’s information. The disadvantaged party must guess
the value of one extra bit and perform the same polyno-
mial-time algorithm twice leading to the 2:1 computa-
tional factor. Tedrick [28 and 29] has demonstrated how
two adversaries can exchange a “fraction of a bit”. Using
Tedrick’s method, the advantage of one party over the
other could be made arbitrarily small. He has shown how
to achieve a (2n + 1):2n expected advantage factor for any
integer n. For example, by choosing n = 2 we can achieve
a 5:4 expected computational advantage instead of the
ordinary 2:1 advantage we get by exchanging one bit at a
time.

Providing a solution to the symmetric exchange problem is
difficult. This is because a verifiable simultaneous
exchange is required. Not only the information parts from
both parties needs to be exchanged simultaneously, each
part must be verified at the same time. Consider a case in
which Sue and Rob each have a secret key of equal length
in bits to exchange. Even if they can simultaneously
exchange their keys, one bit at a time, either party can
cheat by sending junk bits. Therefore, unless the verifica-
tion occurs during the simultaneous exchange, one party
can gain an advantage over the other by cheating. Simulta-
neity is very impractical, if not impossible, to achieve in
practice and simultaneous verification would seem to be
even harder to achieve. We therefore have no choice but to
rely on the approximate solution to symmetric exchange—
gradual and verifiable release of information.

The CEM problem is an asymmetric exchange problem.
There are two reasons for this asymmetry, both of which
are due to the dependency of the receipt to the content of
the message. First, Sue must send Rob her message before
she can ask for a receipt. Second, only the sender needs to
verify the information received from the recipient. In the
absence of a trusted third party, the CEM asymmetric
exchange problem can be transformed into a symmetric
exchange problem for which an approximate solution
exists using gradual and verifiable release of information.

In the presence of a trusted third party, called the postmas-
ter, CEM asymmetric exchange can be transformed into an
atomic operation. Sue submits her CEM to the postmaster.
The postmaster asks Rob for a receipt for Sue’s CEM.
Once the postmaster has received and verified the receipt,
it needs to send the receipt to Sue and the original CEM to



Rob. Ideally, this needs to be done in one atomic operation
where both parties receive their respective information
simultaneously. Otherwise, one party may have an advan-
tage over the other by receiving the other’s information
early. The period in which one party has an advantage over
the other is considered to be a vulnerability period.

An approximate solution to the atomic operation problem
can be reached by minimizing the vulnerability period.
The importance of the length of the vulnerability period is
highly dependent on the application in which CEM is
used. Providing a solution to the atomic operation problem
is difficult.

We distinguish between and classify two families of proto-
cols implementing CEM based on the nature of presence
and amount of involvement of third parties during the
exchange of CEM for a receipt. The first family of proto-
cols use an on-line trusted third party during the exchange.
Because we must believe in the trustworthiness of a third
party, we refer to this class of protocols as the Believers’
CEM, abbreviated as B-CEM. The second family use no
third party during the exchange. Since they do not assume
the existence of a trusted third party during the exchange,
these protocols are referred to as Skeptics’ CEM abbrevi-
ated as S-CEM. We discuss these two types of CEM proto-
cols next.

BELIEVERS’ CEM (B-CEM)

Overview

The B-CEM protocols are characterized by the active use
of a trusted third party, called the postmaster. The post-
master acts as an independent agent arbitrating the
exchange of a receipt from the recipient (Rob), for the
CEM from the sender (Sue). Conceptually, there are five
major phases in any B-CEM protocol. The interactions
between the parties in the protocol is depicted in Figure 1.
In phase one, Sue prepares the CEM and sends it to the
postmaster. In phase two, the postmaster will send the
proof of mailing to Sue if required. Also in phase two, the

postmaster uses symmetric or private-key encryption to
encipher the CEM using a randomly generated crypto-
graphic key producing a ciphertext. The postmaster then
stores a record of the key, the CEM, sender-recipient infor-
mation, and any other information to uniquely identify the
transaction. The postmaster is then responsible for trans-
mitting the ciphertext to Rob. In phase three, Rob signs a
receipt corresponding to the received ciphertext and sends
the receipt to the postmaster. In phase four, the postmaster
verifies the receipt and if valid stores a copy of the receipt.
At this point the postmaster has all the needed information
to begin the exchange. The postmaster begins a two part
operation. First the postmaster sends the cryptographic
key to Rob to decipher the ciphertext. Next, the postmaster
sends a copy of the receipt and the cryptographic key to
Sue as the return receipt. In phase five, both parties indi-
vidually verify the information they received. Note that all
messages exchanged need to be protected for confidential-
ity, authenticity, integrity and non-repudiation of message
origin (Assumption II). The sender-recipient information
must be duplicated inside the message body to protect it
against tampering.

Notation

We cover the notation used to describe the protocol here.
We present the protocol in a three column format with a
special font as shown in Figure 2. The first column indi-
cates where an action is taking place, or in the case where
a message is being exchanged, between which parties. The
second column outlines the action, or the message being
exchanged. The third column, or the line number, is used
to uniquely identify each line of the protocol. The number
is a combination of the figure number and a line number
within that figure. All messages and strings are repre-
sented in lower case letters while the sender, the recipient,
and the postmaster are represented in upper case letters
and abbreviated as S, R, and PM respectively. For example,
Figure 2 represents the case when Sue sends a CEM to the
postmaster.

Figure 1. High-level overview of the interactions among the parties in a B-CEM protocol.

certified electronic mail

ciphertextproof of mailing

receipt

return-receipt deciphering key

Sue Postmaster Rob
(S) (PM) (R)



transactions. Access to databases of such records should
be strictly controlled. The actual details of database opera-
tions are not specified in our protocol. Only the postmas-
ter’s storage activity is outlined as it is critical to the
security of the protocol. The Compare function is used to
compare the equality of information and is used in verify-
ing the validity of received messages. If the Compare
function or any other function ever fails because of a secu-
rity problem (for example, the verification of an invalid
signature) or any other reason, the process executing the
function will abort the protocol. In what follows, we out-
line each phase of the protocol in more detail.

Protocol

In this section, the five phases of a B-CEM protocol are
presented.

Every message exchanged among the parties in the proto-
col consists of a content section (or body) and a header
section. Obviously, appropriate header information is
needed for every message, but we do not present the full
details here. (For example, we suggest the use of the print-
able string “multipart/B-CEM” as the value of the Con-
tent-Type field of the header in CEM. This would allow
Multipurpose Internet Mail Extension (MIME) capable
mail user agents to be used to interface with users.) Also
included in the body is an inner header which holds the
sender-recipient information for Sue and Rob. This is
needed for two reasons. First, it would help the postmaster
obtain needed information. Second, since the message
body is protected against tampering, the integrity of the
inner header can be assured.

It is important to recall that every message sent on the net-
work is assumed to be protected against tampering and/or
eavesdropping by an intruder (Assumption II). Hence,
only the intended recipient can obtain the content of a
received message and verify its integrity. The confidential-
ity of each message sent could be achieved by the sender
asymmetrically encrypting the message with the public
key of the intended recipient. Alternatively, one could use
PEM which uses a hybrid of symmetric and asymmetric
cryptographic techniques to offer confidentiality, authen-
ticity, integrity and non-repudiation of message origin.

S signature:=Sign(e-mail,
S-secret-key) 4.1

R e-mail:=Sign-1(signature,
S-public-key) 4.2

Figure 4. Sample notation. Signature processing.

Figure 2. Sample notation. Sue sending cem to the
postmaster.

The symbol ‘:=’ represents the assignment operator; the
right hand side expression is evaluated first and the result
is assigned to the left hand side. The angle braces, ‘<’ and
‘>’, are used to indicate the concatenation of strings.

Functions or processes used to manipulate messages and
strings are capitalized. Figure 3 illustrates symmetric
encryption using a randomly generated key. For example
the Random-Key-Generator is a secure pseudo-ran-
dom number generator used to generate a random key by
the postmaster (3.1). The key, key, is then used along with
the Encipher function to encipher Sue’s CEM, yielding
ciphertext (3.2). The ciphertext can then be deci-
phered by Rob using the same key and the Decipher
function (3.3). Both the Encipher and Decipher oper-
ations are examples of a secure symmetric or private-key
cryptosystem.

Figure 3. Sample notation. Private-key encryption.

We use the Sign and Sign-1 functions to represent a
secure digital signature scheme (asymmetric cryptosys-
tem). Figure 4 illustrates the notation. These functions are
applied to messages along with the users’ secret or public
key components. The keys are respectively represented as
secret-key and public-key to distinguish them
with the key used in symmetric cryptosystems (key). We
do not specify how each user in the protocol obtains oth-
ers’ public key. This can be done by using a key distribu-
tion center (Assumption IV). To indicate possession of a
key, the users’ acronym is prefixed to the name of the key.
For example, Sue can sign her e-mail using her secret key
(4.1). In reality, a message digest or hash value of the e-
mail is signed instead of the e-mail itself. All signatures
can be verified by applying the Sign-1 function to the
signature (4.2). In reality, the verification may involve
computing the message digest and comparing it with the
output of the Sign-1 function.

Other functions used are the Store and Compare func-
tions. The Store function is used to maintain information
in private and protected databases. This is particularly
needed by the postmaster to maintain a record of CEM

S-->PM cem 2.1

PM key:=Random-Key-Generator() 3.1

PM ciphertext:=Encipher(cem,key) 3.2

R cem:=Decipher(ciphertext,key) 3.3



Phase one

In the first phase (see Figure 5) Sue signs her e-mail mes-
sage and sends the result to the postmaster.

Figure 5. Phase one of a B-CEM protocol. Cem
generation.

Phase two

The postmaster verifies Sue’s signature. It is important for
the postmaster to store a record of this transaction at this
point in stable storage (memory that retains information
despite failures). The record includes the sender-recipient
information, a timestamp (for replay prevention), and the
text of Sue’s CEM. This record can serve as proof of mail-
ing for Sue. However, if requested, the postmaster can sign
Sue’s CEM, cem, and return it to Sue as her proof of mail-
ing. The postmaster then generates and stores a pseudo-
random number, PM-key, with which it enciphers cem.
The resulting ciphertext (ciphertext) is signed by the
postmaster and sent to Rob. Rob cannot decipher
ciphertext without PM-key. Rob must sign a receipt
to obtain PM-key. It is preferable to have the sender
receive the proof of mailing at the same time the recipient
receives the enciphered message. The postmaster’s actions
in phase two are detailed in Figure 6.

Phase three

Once cipher is received, Rob verifies the postmaster’s
signature and obtains and stores ciphertext. Rob then
signs ciphertext to produce the receipt, receipt.
Note that since Rob does not yet know anything about the

S cem:=Sign(e-mail,S-secret-key)5.1

S-->PM cem5.2

CEM content, he may not be able to use cipher alone to
verify the postmaster’s signature. Some other technique
may be required here. For example, the postmaster can
append its identity to ciphertext before signing it. If
the postmaster’s identity is recovered after applying
Sign-1 to cipher, the signature is deemed valid. In
reality, this problem will be eliminated if signatures are
constructed using the message digest. Rob’s processing is
detailed in Figure 7.

Figure 7. Phase three of a B-CEM protocol. Receipt
generation.

Phase four

Figure 8 presents the postmaster’s actions in phase four. In
order to check the validity of the receipt, the postmas-
ter compares the original ciphertext (see 6.5) with
that resulted by applying Sign-1 to receipt (8.1). If
the verification fails, the postmaster aborts the protocol
and stops. If all succeeds, the postmaster appends
receipt to the stored record (8.2, see also 6.3 and 6.6).
This is useful for future inquiries and can be used as Sue’s
return receipt. Should a dispute occur between the parties,
the record maintained by the postmaster can be presented
to a judge. The postmaster then prepares two messages.
The first is for Rob and includes PM-key. The second is
for Sue and contains both PM-key and receipt. The
postmaster then signs and sends the two messages. It is

R ciphertext
:=Sign-1(cipher,

PM-public-key) 7.1

R receipt
:=Sign(ciphertext,

R-secret-key) 7.2

R-->PM receipt 7.3

Figure 6. Phase two of a B-CEM protocol. Postmaster receives cem and forwards to recipient.

PM e-mail := Sign-1(cem,S-public-key) 6.1

PM proof-of-mail := Sign(cem,PM-secret-key) 6.2

PM Store(<sender-recipient information,cem>) 6.3

PM PM-key := Random-Key-Generator() 6.4

PM ciphertext := Encipher(cem,PM-key) 6.5

PM Store(PM-key)a 6.6

PM cipher := Sign(ciphertext,PM-secret-key) 6.7

PM-->R cipher 6.8

PM-->S proof-of-mail 6.9

a. The randomly generated key, PM-key, is appended to the record stored for this CEM transaction.



preferable to have the two messages sent in a single atomic
operation. Atomicity provides for a fair exchange without
granting one party advantage over the other. The goal is to
have Sue receive receipt at the same time Rob receives
PM-key. Otherwise, one party would receive its respec-
tive information early. In such cases, the information
stored by the postmaster could be used to resolve any dis-
pute. Recall that the postmaster’s database is considered to
be stable storage. If either party does not receive the valid
information, they may request the postmaster to send it to
them again.

Phase five

After verifying the postmaster’s signature, Rob uses the
PM-key received to decipher ciphertext. If PM-key
was not received after a specified time-out period or if the
received signature was invalid, Rob will repeat requesting
the key from the postmaster by resubmitting receipt
(see 7.3). The validity of cem can easily be determined by
verifying Sue’s signature. However, Rob need not worry if
Sue’s signature is invalid. As the receipt is dependent on
the content of the cem received, Rob only signed for what
he received and cannot be held accountable for what he
did not receive. See Figure 9 for the outline of Rob’s activ-
ity during phase five.

Figure 9. Phase five of a B-CEM protocol. Recipient
verifies information.

Sue also verifies the postmaster’s signature (see Figure
10). If invalid or if Sue never received a response, she can
request the postmaster to retransmit. Sue can also check
the validity of receipt by forming a ciphertext by enci-
phering cem with PM-key and comparing the ciphertext
just obtained with that generated by applying the Sign-1

R PM-key
:=Sign-1(deciphering-key,

PM-public-key) 9.1

R cem
:=Decipher(ciphertext,PM-key) 9.2

function to receipt. Sue is not required to verify the
receipt as the postmaster has already done that in phase
four (see 8.1).

Figure 10. Phase five of a B-CEM protocol. Sender
receives receipt.

Both Rob and Sue can store relevant information for their
records at this time for future use.

Assumptions unique to B-CEM protocols

VI - Trusted and secure third parties are available to all

In addition to the common assumptions enumerated
before, B-CEM protocols, by definition, require a trusted
and secure third party (the postmaster). The postmaster
arbitrates a fair exchange of Sue’s CEM in return for
Rob’s receipt. The postmaster will not modify or disclose
messages or the cryptographic key used in the protocol. It
will also make its services available to all legitimate users.
The postmaster functions correctly (as specified in the pro-
tocol). If the postmaster is made available on-line without
human interaction, its secret key will be needed on the sys-
tem. In such a case, precautions must be made to secure
access to that key against intruders. We assume that the
combination of physical security and trusted human opera-
tors would provide adequate protection. The use of token
devices such as smartcards could also assist in securing the
postmaster’s secret key.

VII - Stable storage with strict access control mechanism

The postmaster is also assumed to use a stable storage for
maintaining records of CEM transactions. The use of sta-
ble storage helps solve problems arising from network or
process failures. Strict access control to this database is
assumed to be enforced.

S <receipt,PM-key>
:=Sign-1(return-receipt,

PM-public-key) 10.1

Figure 8. Phase four of a B-CEM protocol. Postmaster verifies receipt and begins the exchange.

PM Compare(ciphertext,Sign-1(receipt,R-public-key)) 8.1

PM Store(receipt) 8.2

PM deciphering-key:=Sign(PM-key,PM-secret-key) 8.3

PM return-receipt:=Sign(<receipt,PM-key>,PM-secret-key) 8.4

PM-->R deciphering-key 8.5

PM-->S return-receipt 8.6



Discussion

It must be noted that there can be different implementa-
tions of our B-CEM protocol. We have presented one such
example which we felt most completely and clearly pre-
sents our ideas. Developers implementing the protocol
face trade-offs and must address specific requirements.
Issues of practicality, cost, performance, and complexity
must be considered. Unfortunately there is no free lunch;
improvements come at a cost of increased complexity. We
informally discuss some other issues of relevance in this
section.

Implementing the postmaster

Theoretically, only a single postmaster is required by the
protocol. However, storage requirements, processing
power, and bandwidth limitations may necessitate more
than one postmaster to be available. Since there can be
arbitrarily many postmasters, we do not believe that any
one postmaster would be overwhelmed with requests. In
any event, since the postmaster is used for every CEM
exchange, it represents a bottleneck. This bottleneck can
be alleviated by reducing the storage, bandwidth, and pro-
cessing requirements of the postmaster. For example, the
storage requirements can be reduced by storing the mes-
sage digest instead of the message itself. Message digests
can be obtained by applying a one-way hash function [23
and 24] to the message. One must use a secure hash func-
tion which is hard to invert. Otherwise, the sender (or the
recipient) may be able to cheat by claiming to have sent
(or received) a different message. Simple timestamping of
the message before applying the hash function would also
help make the digest uniquely identify the message (for
example, if the same message is being sent more than
once). The hash can then be used to facilitate retrieval of
records pertaining to a particular CEM transaction. Meth-
ods to alleviate the postmaster’s storage requirements
come at the expense of additional administration in the
protocol to retrieve records of CEM transaction.

Some long-term bookkeeping is required of the postmaster
agents in B-CEM protocols. The postmaster is required to
maintain a record of the exchange until a copy of the
record signed by the postmaster is sent and received by
both parties. This eliminates problems that may arise from
one party failing during the vulnerability period or the
communication network failing during the exchange. In
the model presented here, the postmaster maintains a
record of the transaction which can be used by the sender
as proof of mailing.

Each postmaster should be built as a tamper-resistant mod-
ule which can be trusted. The postmaster must function

correctly as specified in the protocol. Problems may arise
if the postmaster’s storage facility is compromised, since
the postmaster maintains records of old CEM exchanges.

Probability of undetected cheating

With a trusted third party, the probability of undetected
cheating by either party becomes negligible; but this
occurs only after the trusted postmaster has received and
verified all the information that needs to be exchanged.
(By cheating we mean Sue obtaining the receipt while Rob
never receives the CEM, or Rob obtaining the CEM with-
out signing a receipt for it.) We have used a secure private-
key cryptosystem as a building block to our B-CEM proto-
col and have assumed a reliable communication channel
using PEM. The security of our protocol relies on the
security of these building blocks. The probability of unde-
tected cheating is directly associated with the security
parameters of the building blocks. For example, in order
for Rob to cheat, he would need to reliably decipher
ciphertext without PM-key (see 6.5). Assuming a
secure symmetric cryptosystem (Corollary B), the proba-
bility of his doing so in tractable time is negligible. As
another example, Sue might try to forge Rob’s signature to
cheat. This contradicts Corollary C.

Cryptographic ambiguity

In phase three, Rob blindly signs ciphertext. It is ambigu-
ous at this point what that ciphertext represents. However,
Rob need not worry, as his signature on the ciphertext is in
the context of this CEM transaction. If challenged, Rob
can supply cipher (see 6.8), which is signed by the post-
master, to justify having signed the enclosed ciphertext
(see 6.7). He cannot be held accountable if the ciphertext
happens to be something he would not otherwise be will-
ing to sign. In addition, the ciphertext is created by a
trusted postmaster with a randomly chosen cryptographic
key. The probability that the ciphertext would actually be
something that Rob would not want to sign is negligible as
it highly depends on the random key chosen from a large
number of possible keys. Furthermore, no one has an a
priori knowledge of this random key.

Can Sue use Rob’s receipt on a message m1 for another
message m2? The probability of Sue being able to do this
is negligible in tractable time. The return-receipt
obtained by Sue (8.6) is signed by the postmaster and
includes both PM-key and receipt (8.4). The postmas-
ter’s signature binds the randomly chosen PM-key used
in generating ciphertext to Rob’s receipt. In this
way, Rob’s receipt is dependant on the content of the
original cem (see 6.5). For Sue to convince someone that
Rob really signed for message m2 instead of m1, she



should, after the CEM transaction is over, create a mes-
sage m2 which when symmetrically encrypted using PM-
key would result in the same ciphertext as ciphertext
(6.5). Her probability of success is negligible assuming a
secure symmetric cryptosystem (Corollary B).

SKEPTICS’ CEM (S-CEM)

Background and notation

We use cryptographic techniques such as bit-commitment
schemes and zero-knowledge interactive proofs in imple-
menting the S-CEM protocol. We therefore briefly discuss
both techniques and enumerate our requirements in this
section. We also describe the notion of a signed commit-
ment which we use in our S-CEM protocol.

Bit-Commitment Schemes

We extend the notation presented earlier to include the
concept of a commitment to a cryptographic key. We use
secure bit-commitment schemes to commit to individual
bits of the key. The commitment to any key is then the
ordered set of bit-commitments to all bits of the key. Sev-
eral bit-commitment schemes have been introduced in the
literature [4, 5 and 9]. Usually, a commitment to a bit b is
computed as a function of b and a random number r.
Revealing the commitment can then be achieved verifiably
by releasing the value of the random number r used in
computing the commitment. We use the phrase revealing
(or releasing) commitments to imply opening commit-
ments. Without referring to a specific commitment
scheme, we use the following notation to represent a com-
mitment scheme. A pair of functions Bit-Commit-
ment, and Bit-Commitment-1 is used to create
commitments and to reveal previously committed bits
respectively.

Consider the case where Sue commits to the value of a
random key S-key and later reveals her commitment to
Rob depicted in Figure 11. Sue’s commitment is the
ordered set of bit-commitments for every bit of S-key
(11.1). We use curly braces, ‘{’ and ‘}’, to indicate the
ordered set; the subscripted number after the right brace
indicates the lower bound of the ordered set while the
superscripted number represents the upper bound of the
ordered set. Sue later reveals her commitment by releasing
the random numbers she used in generating the commit-
ments. To do this, Sue iterates for |S-key| times (number
of bits of S-key). In each iteration, she releases the ran-
dom number S-r-i, which she used to commit to S-
keyi (11.2). Where S-keyi and S-r-i represent the ith

bit of S-key and Sue’s ith random number respectively.

Figure 11. Sample notation. Bit-commitment.

Rob can verify each ith random number received by
applying Bit-Commitment-1 to the commitment of S-
keyi (Figure 12). The function Bit-Commitment-1

fails if an invalid S-r-i is sent. In this way, cheating can
be detected.

Figure 12. Sample notation. Obtaining the committed
bits.

Properties of a secure bit-commitment scheme are also
enumerated in the literature [5]. Informally, it must be very
difficult for anyone, who does not know r, to find b from
the commitment with a better than 50 percent chance. The
person computing the commitment should not be able to
reveal a committed bit as both 0 and 1. More formally, a
secure bit-commitment scheme used by Sue would have
the following properties:

• Sue can commit to any bit b in tractable time;

• By releasing her bit-commitment, Sue can convince
another user that the bit she committed to is indeed b.
Sue must not be able to reveal a bit-commitment as
both b and (1-b);

• Rob or any other user cannot learn anything from the
way in which Sue creates and reveals her bit-commit-
ments even after several similar interactions with Sue;

• There is no tractable function on Sue’s bit-commitment
correctly giving the value of her committed bits better
than half the time.

Signed commitment

We use the commitment scheme described above in a
signed message which we call a signed commitment. A
signed commitment combines a bit-commitment scheme
with a signature scheme. Signed commitments are used in

S commitment

:={Bit-Commitment |S-key|

(S-keyi,S-r-i)}i=1 11.1

For (i = 1 to |S-key|) Do 11.2

S-->R S-r-i

R S-keyi
:=Bit-Commitment-1

(Bit-Commitment(S-keyi,S-r-i),
S-r-i) 12.1



our S-CEM protocol. We now formally define a signed
commitment.

Definition 1 - A signed commitment

A signed commitment of a user, identified by U, on a mes-
sage, m, is a message signed by U consisting of a ciphertext
and a commitment to the cryptographic key used to gener-
ate the ciphertext (see step 13.4 in Figure 13). The mes-
sage, m, is signed by U to form U’s signature of m (13.1).
The ciphertext is the output of a symmetric encryption
algorithm applied to U’s signature of m using a crypto-
graphic key, k, of length |k| bits (13.2). The commitment
is an ordered set of bit-commitments, one for each bit of k.
The bit-commitment for each bit of k is created using an
independent random number U-r-i (13.3).

Zero-Knowledge Interactive Proofs (ZKIPs)

The complexity class NP is well known. One could view
NP as the class of languages L, which have polynomial-
time proof-systems for language membership. The proof-
system consists of two communicating parties, the prover
and the verifier. The verifier is a polynomial-time machine
which checks the correctness of the proof. The prover may
either be computationally more powerful than the verifier
or possess some additional knowledge or both. On every
input string x ∈ L, the prover proves to the verifier that x is
in fact in L by submitting a certificate to the verifier. The
certificate must have a length polynomial in the length of
x. The interaction is very simple and consists of the prover
sending the certificate to the verifier. If x ∉ L, the prover
cannot obtain any certificate which could convince the
verifier of the membership of x in L.

Goldwasser, Micali, and Rackoff [12 and 13] extended the
classical notion of NP proof systems by incorporating ran-
domness and by allowing a more complex interaction. The
randomness is achieved by allowing the communicating
parties to flip unbiased coins resulting in what they termed
“probabilistic version of NP”. The complex interaction is
achieved by having the prover and the verifier exchange
multiple messages instead of the one message ordinarily
exchanged in NP proof-systems. Due to the randomness
introduced, the verifier is allowed to err with a small prob-

ability. In other words, the verifier may erroneously accept
the proof of language membership for some very small
number of inputs which are not an element of the lan-
guage. The probabilistic version of NP is called an inter-
active proof-system. Let IP be the class of languages that
admit an interactive proof-system. It is clear that NP cov-
ers a subset of the languages in the class IP; every L ∈ NP
has an interactive proof-system in which the verifier never
errs and the interaction involves the sender sending only
one message (the certificate) to the verifier.

To better understand the notion of ZKIP, it is necessary to
describe interactive proof-systems in greater detail.
Throughout this paper, unless stated otherwise, by ZKIP
we refer to zero-knowledge interactive proofs of language
membership. We repeat the terminology and definition
presented in [13]. An Interactive Turing Machine (ITM) is
a Turing machine with five tapes; a read-only input tape, a
work tape, a read-only random tape, one read-only com-
munication tape, and one write-only communication tape.
The random tape contains an infinite sequence of random
bits, and can only be scanned in one direction. Flipping an
unbiased coin can be simulated by the ITM simply reading
the next bit on its random tape. An interactive protocol is
an ordered pair of ITM’s P and V such that they share the
input tape. Furthermore, P’s write-only communication
tape is V’s read-only communication tape and vice versa.
This way, the two ITM’s can communicate. The two
machines take turn in being active, with V being active
first. Either machine can terminate by not sending any
message in the active stage. Machine V accepts (or rejects)
the input by outputting accept (or reject) and terminating
the protocol. The sum of all computations of each machine
is its total computation time. Machine V’s total computa-
tion time is bounded by a polynomial in the length of the
common input. While machine P is assumed not to be
computationally bounded in [13], we relax this require-
ment for practical reasons. We simply require that machine
P be more powerful than machine V (either computation-
ally, or possess additional information). Figure 14 is repro-
duced from [13] and illustrates an interactive protocol.

An interactive proof of language membership for a lan-
guage L is an interactive protocol in which two properties
hold: Completeness and Soundness.

Figure 13. Sample notation. A signed commitment.

U signature := Sign(m,U-secret-key) 13.1

U ciphertext := Encipher(signature,k) 13.2
|k|

U commitment := {Bit-Commitment(ki,U-r-i)}i=1 13.3

U signed-commitment := Sign(<ciphertext,commitment>,U-secret-key) 13.4



Completeness - If x ∈ L, at the end of the interactive pro-
tocol V accepts with overwhelming probability.

Soundness - If x ∉ L, no machine acting as P can con-
vince V to accept (except with negligible probability).

Notice that the probability of error, ε, can be made arbi-
trarily small. In [13], ε was set equal to |x|-k for any posi-
tive integer k. It was also mentioned that by using standard
techniques, the error probability could be arbitrarily
reduced to any small number (for example, 2-|x|). Of
course the goal of a secure interactive proof system is to
have ε as small as possible.

What a verifier sees in the course of the communications
constitutes a view. This view includes the verifier’s ran-
dom tape, the input tape, and the two communication
tapes. In other words, a view consists of the input string,
the verifier’s coin tosses, and the content of the conversa-
tion with the prover. Due to the probabilistic nature of the
random tape, a probability distribution is defined on this
view. For more detail and formal discussion, please refer
to [13]. At this point, we are ready to discuss ZKIP.

An interactive proof of language membership for a lan-
guage L is perfect zero-knowledge if the verifier learns
only one bit of information (namely, whether or not the
input belongs to L). More formally, an interactive proof of
language membership is perfect zero-knowledge if for
each polynomial-time verifier, and the corresponding view
v, there exists a polynomial-time simulator capable of pro-
ducing the same view v, without ever talking to the prover.
Intuitively, since the view can be generated by a simulator,
the verifier has not learned anything from the prover that
the verifier could not have calculated alone.

An interactive proof of language membership is consid-
ered statistically zero-knowledge if the view created by the
simulator, v′, is statistically indistinguishable [13] from v.
An interactive proof of language membership is consid-
ered computationally zero-knowledge if the view created
by the simulator, v′, is computationally indistinguishable

[13] from v. Informally, computational indistinguishability
implies that the simulator would require more than poly-
nomial-time to simulate the interaction. Statistical indis-
tinguishability, on the other hand, implies that the
simulated view generated is statistically close to, but not
equal to, the original view. A probabilistic polynomial-
time verifier cannot learn any information in a computa-
tional ZKIP except for whether or not the input is in the
language. A statistical ZKIP implies the same, but this
time for an arbitrary powerful verifier.

Overview of the S-CEM protocols

One can implement a protocol offering CEM without
using a trusted third party. We introduce a method for
achieving this goal using an interactive protocol. Unlike
B-CEM, S-CEM protocols do not rely on the presence of a
trusted third party during the exchange of CEM in return
for a receipt. Both parties should be available on-line in
order to engage in an interactive dialogue. This differs
from the store-and-forward mechanism used in ordinary e-
mail. Since there is no third party to settle any dispute that
may arise during the exchange, the protocol is designed in
such a way that two properties hold: First, with high prob-
ability, neither party can cheat the other and escape detec-
tion. Second, if either party terminates the exchange in the
middle, the advantage that party may gain over the other
can be made arbitrarily small.

We transform the CEM problem into a symmetric
exchange problem as follows: Sue enciphers her CEM
with a cryptographic key and sends it in a signed commit-
ment to Rob. Rob will then sign the received message to
obtain the receipt. Rob enciphers the receipt with another
cryptographic key and forms a signed commitment which
he sends to Sue. Rob should also convince Sue that his
signed commitment actually holds the valid receipt. Sue
could, in polynomial-time, verify this if she knew the
cryptographic key used by Rob. Rob uses a zero-knowl-
edge interactive proof to convince Sue. When both signed

Figure 14. An Interactive Protocol
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commitments are exchanged and Sue is convinced of the
validity of Rob’s signed commitment, the CEM problem
has been transformed into a symmetric exchange problem.
Both parties will then engage in a gradual and verifiable
release of their respective cryptographic keys. One party
goes first and both take tuns in releasing their crypto-
graphic key commitments one bit at a time. By releasing a
fraction of a bit or multiple bits, the granularity of the pro-
tocol could be adjusted. Note that the commitment
schemes may need to be adjusted if the chosen granularity
is not a single bit.

Protocol

The S-CEM protocol presented here consists of four
phases. Each phase is described in greater detail in the fol-
lowing sections.

Phase one

Figure 15 illustrates Sue’s activity in phase one of the S-
CEM protocol. Sue signs her e-mail and then uses a con-
ventional or symmetric cryptosystem to encipher her sig-
nature with a randomly generated cryptographic key, S-
key. Sue’s commitment to S-key is an ordered pair of
bit-commitments for every bit of S-key. Her signed com-

mitment is formed by appending the commitment to the
ciphertext and signing the resulting message. Sue’s signed
commitment is then sent to Rob.

Phase two

Once received, Rob verifies Sue’s signature on her signed
commitment. Note that since cem is enciphered, Rob can-
not verify its validity. However, Rob’s receipt will depend
on the received cem. If Sue’s signature on S-signed-
commitment was valid, Rob signs S-signed-com-
mitment to form his receipt. Note that Rob can refuse to
participate in the exchange (and thus refuse the mail) at
this point. While we cannot force Rob to respond, we
would like to detect whether he sends a valid receipt or
not. Rob enciphers the receipt with a randomly generated
key, R-key. Rob then forms a signed commitment and
sends it to Sue. Note that since receipt is enciphered, Sue
cannot verify its validity by simply looking at R-
signed-commitment. Rob is therefore required to
prove to Sue that the message sent actually contains a
valid receipt. This can be done using a zero-knowledge
interactive proof. We further elaborate on this point in the
next section.

Figure 15. Phase one of an S-CEM protocol. Sender submits a signed commitment to recipient.

S cem := Sign(e-mail,S-secret-key) 15.1

S S-key := Random-Key-Generator() 15.2

S ciphertext := Encipher(cem,S-key) 15.3
|S-key|

S commitment := {Bit-Commitment(S-keyi,S-r-i)} i=1 15.4

S message := <ciphertext,commitment> 15.5
S S-signed-commitment:= Sign(message,S-secret-key) 15.6
S-->R S-signed-commitment 15.7

Figure 16. Phase two of an S-CEM protocol. Recipient submits signed commitment to sender.

R <S-ciphertext,S-commitment>:=Sign-1(S-signed-commitment,S-public-key) 16.1

R receipt := Sign(S-signed-commitment,R-secret-key) 16.2

R R-key := Random-Key-Generator() 16.3

R ciphertext := Encipher(receipt,R-key) 16.4
|R-key|

R commitment := {Bit-Commitment(R-keyi,R-r-i)}i=1 16.5

R R-signed-commitment := Sign(<ciphertext,commitment>,R-secret-key) 16.6

R-->S R-signed-commitment 16.7



Phase three (sketch)

Rob must convince Sue that his signed commitment con-
tains a valid receipt. As previously claimed, Rob can do
this using a ZKIP. Rob acts as a prover and Sue acts as the
verifier in an interactive dialogue. At the end of the dia-
logue, Sue is convinced (to a degree of certainty arbitrarily
close to 1) that Rob’s claim is valid. Using ZKIP, Sue can-
not obtain any additional information on the signed com-
mitment. In particular, Sue is no better off deriving the
receipt from the signed commitment than if she had origi-
nally assumed Rob’s claim to be true. In other words, Sue
cannot cheat by trying to obtain additional information
during the ZKIP. If Rob’s signed commitment does not
include a valid receipt, Rob should not be able to convince
Sue otherwise.

So far we have claimed that such a ZKIP does exist. We
will more formally prove our claim below. In order to do
so, however, we need some common definitions and termi-
nology. We use a formal-language framework and use the
terminology presented in [8]. We define a language associ-
ated with signed commitments and show that this lan-
guage is in the complexity class NP. Using a well known
result from [14] stating that all languages in NP have
ZKIPs, we then conclude that there exists a ZKIP for Rob
with which he can convince Sue of the validity of his
signed commitment.

Definition 2 - The SIGNED-COMMITMENT Language

Given the user identity, U, a message, m, and a signed com-
mitment, sc, the problem is to find an ordered set of |k|
random numbers, U-r-1 through U-r-|k| used to com-
pute the commitment in sc. We assume that U’s public
key component is derivable from the user identity, U. Once
k is extracted from the bit-commitments, it can decipher
the ciphertext and result in U’s signature of m. U’s signa-
ture of m can easily be verified by applying the Sign-1

function and using U’s public key, U-public-key. The
related decision problem can be termed: “Is there a
sequence of |k| random numbers for which sc is a valid
signed commitment of message m by U?”. As a formal lan-
guage, we define:

SIGNED-COMMITMENT = {<sc, m, U> ∈ {0,1}*: sc is
U’s signed commitment of m}

Lemma 1 - SIGNED-COMMITMENT ∈ NP

Proof: To show that SIGNED-COMMITMENT ∈ NP, for
an instance <sc, m, U> of the problem, we let the |k| ran-
dom numbers used in generating sc (U-r-1 through U-
r-|k|) be the certificate used by a polynomial-time verifi-
cation algorithm, Poly-Time-Verify. Poly-Time-
Verify can then be constructed as presented in Figure

17. Note that if any sub-function fails, the Poly-Time-
Verify function will return the integer zero (value of
FALSE). The function first verifies the outer signature (see
17.1). The key, k, is then obtained by revealing the bit-
commitments. Notice that if any random number received
is different from the one used to generate the bit-commit-
ment, the Bit-Commitment-1 function fails and the
whole function will return FALSE (17.2). U’s signature of
m is then obtained by deciphering the ciphertext using k
(17.3). By applying the Sign-1 function to the inner sig-
nature (17.4), a message is obtained which is compared for
equality to m (17.5). Note that Poly-Time-Verify
returns TRUE (value 1) if and only if all lines previous to
(17.5) are executed successfully and the message obtained
in (17.4) matches m. This means that there is no certificate
that can fool the verification function into returning TRUE
for invalid instances <sc′, m, U>, where sc′ is an invalid
signed commitment of m by U.

The above algorithm (written in a pseudo-language) can
be performed straightforwardly in polynomial-time as
every sub-function used also runs in polynomial-time.
Therefore, SIGNED-COMMITMENT ∈ NP. ❑

Lemma 2 - For all languages L ∈ NP, there exists a ZKIP.

Proof: This is a well known result. To show that there
exists a ZKIP for every language in NP, it suffices to show
some NP-complete language has a zero-knowledge inter-
active protocol. Using the method of polynomial-time
reduction, we can then reduce all problems in NP into the
NP-complete language chosen. There are several papers
outlining a ZKIP for NP-complete languages in the litera-
ture. One example is the ZKIP for Graph 3-Colorability
(assuming secure encryption exists) which was presented
by Goldreich, Micali, and Wigderson in [14]. ❑

Theorem 1 - There exists a ZKIP for SIGNED-COMMIT-
MENT

Proof: Proof follows immediately from Lemma 1, and
Lemma 2. ❑

Phase four

At this point both parties are ready to engage in the sym-
metric exchange of information to reveal their respective
key commitments (see Figure 18). Sue needs to send the
|S-key| random numbers, S-r-1 through S-r-|S-
key|, while Rob needs to send the |R-key| random num-
bers, R-r-1 through R-r-|R-key|. Note that |S-key|
equals |R-key|. The gradual and verifiable exchange of
the information could be achieved by both parties taking
turns in the following iterative procedure. The protocol
presented here assumes that Sue starts first. Rob follows



and executes symmetrically similar steps as Sue (pre-
sented in Figure 18). If either party cheats by sending
invalid information, they would get caught (18.6). The
parties abort the protocol if either is caught cheating. The
party who cheated will have at most one bit more than the
other. The cheater has therefore at most only a 2:1 compu-
tational advantage in finding the cryptographic key of the
other party (assuming that the partial information obtained
so far could be used to obtain the key).

Early stopping procedure

In what follows, Sue and Rob can act as both Y or U. If
party Y cheats by sending a wrong random number, the
other party, U, will abort the protocol. If only the last bit-
commitment of Y was not revealed, U will guess the value
of the last bit, Y-key|Y-key|. On the other hand, if more
bits of Y-key were missing, the only way U can obtain Y-
key (other than by guessing) is to use some algorithm.
The algorithm will use the partial information already
obtained on Y-key and Y’s signed commitment, Y-
signed-commitment. We assume that both parties

Figure 17. Polynomial time verification algorithm for SIGNED-COMMITMENT.

|K|

Boolean Poly-Time-Verify(<sc,m,U>,{U-r-i}i=1)

{

|k|

<ciphertext,{Bit-Commitment(ki,U-r-i)}i=1>:= Sign
-1(sc,U-public-key) 17.1

If the Sign-1 function fails, return FALSE

For (i=1 to |k|) Do { 17.2

ki:=Bit-Commitment
-1(Bit-Commitment(ki,U-r-i),U-r-i)

If the Bit-Commitment-1 function fails, return FALSE

}

signature:=Decipher(ciphertext,k) 17.3

If the Decipher function fails, return FALSE

message:=Sign-1(signature,U-public-key) 17.4

If the Sign-1 function fails, return FALSE

Compare(m,message) 17.5

If NOT equal

return FALSE

else

return TRUE

}

Figure 18. Phase four of an S-CEM protocol. Symmetric exchange to reveal (Sue’s) commitments.

For (i=1 to |S-key|) Do 18.1

{

S-->R Sign(S-r-i,S-secret-key) 18.2

R-->S Sign(R-r-i,R-secret-key) 18.3

S R-r-i:=Sign-1(Sign(R-r-i,R-secret-key),R-public-key) 18.4

S R-keyi:=Bit-Commitment
-1(Bit-Commitment(R-keyi,R-r-i),R-r-i) 18.5

If the Bit-Commitment-1 function fails, then STOP (R is cheating) 18.6

}

If had to terminate early, then execute the early stopping procedure.



have the same knowledge of algorithms (Assumption I).
Therefore as noted above, Y has at most only a fixed
advantage over U. Therefore, our protocol is fair.

Assumptions unique to S-CEM protocols

In addition to the common assumptions enumerated ear-
lier, S-CEM protocols have the following assumptions
which follow from Assumption V and are stated here as
corollaries.

D - Secure bit-commitment schemes exist

S-CEM protocols rely on the existence of a secure bit-
commitment scheme as described earlier. The bit-commit-
ment will allow for verifiable release of committed bits.

E - Unconditionally secure (for the verifier) ZKIPs with
bounded execution time and bounded number of mes-
sages exchanged exist

The ZKIP we use should also be unconditionally secure
for the verifier. This means that except perhaps for a negli-
gible probability, the prover (Rob), no matter how power-
ful, should not be able to convince the verifier (Sue) of any
false claim. The verifier must not learn any information
beyond Rob’s claim. We also require the ZKIP to com-
plete with bounded number of messages exchanged and
with finite execution time. This last condition is required
for a practical implementation of the protocol.

Discussion

We informally discuss some issues of relevance in this
section. In particular we discuss some aspects of the S-
CEM protocol which was presented in this paper. We will
also attempt to justify our approach.

Implementing the S-CEM protocol

The S-CEM protocol is to be performed while both parties
are present on-line. This may limit the applicability of the
S-CEM protocol for regular e-mail. On the other hand,
interactive applications such as the File Transfer Protocol
(FTP) [21] or the Post Office Protocol (POP) [26] can ben-
efit from the on-line interactions in our S-CEM protocols.
Of course other on-line applications which are based on
the client-server model can also benefit from S-CEM.

Furthermore it is important to mention that while the pre-
sentation of our solution is theoretical, evidence suggests
that practical implementations are possible. S-CEM imple-
mentations would require practical implementations of
ZKIPs as well as great deal of tuning. Practical implemen-
tations of ZKIPs do exist. Protocols for several NP-com-

plete problems are presented in the literature (see for
example [4 and 6]). One can implement a zero-knowledge
protocol for S-CEM using standard reduction techniques
and existing zero-knowledge protocols for NP-complete
problems. However, the resulting protocol would most
likely be impractical (too many messages exchanged).
Practical implementation of zero-knowledge protocols are
available which require bounded number of messages
exchanged during the protocol (see [10, 30, and 31]).
Extrapolating from these existing protocols, we believe
that practical implementation of ZKIP for S-CEM is possi-
ble.

Probability of undetected cheating

In S-CEM protocol, there are several cases to consider in
which a party might attempt to cheat the other. In the first
three phases, both parties may attempt to send each other
an invalid signed commitment. Rob cannot cheat this way
as he will most likely get caught during the ZKIP interac-
tive dialogue (Corollary E). Sue also cannot cheat as the
receipt is dependent on the content of the message
received by Rob. If Sue sends junk, she receives a receipt
indicating so. Unless Sue creates an invalid signed com-
mitment for a bogus message which is encoded exactly the
same as the valid signed commitment, Sue cannot benefit
from cheating at this phase. To be successful, Sue must be
able to do either of two things. She might try to find a mes-
sage, m′, not equal to the original message (e-mail, see
15.1) which when signed will result in the same signature
as Sign(e-mail,S-secret-key). Or, she might try
to find a cryptographic key, S-key′, not equal to S-key
which generates the same ciphertext as Encipher(
cem,S-key). In both possibilities Sue has a negligible
chance of success (Corollaries C and B). The same is true
for Rob. In other words, it is highly unlikely for Sue or
Rob to be able to reliably achieve either of the above tasks
in tractable time. In addition to the above, Sue (or Rob)
may want to cheat by sending a bogus commitment string,
one which she (he) could later reveal as a different key.
Corollary D prevents this case except for an arbitrarily
small probability. Hence, the chances that either party can
cheat in the first three phases of the protocol can be made
arbitrarily small. The exact probability depends on the
actual algorithms used to implement the protocol. In the
fourth phase of the S-CEM protocol, both parties engage
in a gradual exchange of the bits to their respective crypto-
graphic keys used in the protocol. This exchange is verifi-
able (Corollary D) using the Bit-Commitment-1

function. Hence, the chances that either party can cheat
can be made arbitrarily small. In the interaction in phase
four, one party has some advantage over the other by not
going first. The advantage is that the party has one extra



piece of information on the other’s cryptographic key.
This piece can be made arbitrarily small as shown by [28].
Hence, the advantage also can be made arbitrarily small.
Therefore we argue that the protocol is fair.

APPLICATIONS

Electronic mail is one of the most popular services in any
communication network. We believe that by enhancing the
capabilities and security of electronic mail, CEM has the
potential to make electronic mail an even more attractive
service. Many applications that use electronic messaging
can benefit from the use of CEM protocols. These include
but are not limited to bank transactions, electronic funds
transfer, trading of stocks, and any application that
involves or can benefit from contractual agreements in
digital form. Any service host providing services on the
communication network can request a receipt for the use
of its service. These receipts can then be used in the billing
process.

Protocols for signing contracts can be accomplished using
CEM. To sign a contract, C, Rob and Sue exchange two
agreements as CEM messages. Sue sends Rob the CEM
message: “Sue agrees to C if Sue receives Rob’s agree-
ment message. -- signed Sue”. Rob sends a similar signed
message to Sue interchanging every occurrence of Sue
with Rob and vice versa. Note that the contract is referred
to in each agreement message. Also note that both parties
are verifiably committed to the contract only after both
receive the receipt for their agreement message.

The B-CEM protocols presented above can be imple-
mented in today’s communications networks. Using PEM
as a building block would provide for the required secure
communications and allows B-CEM to take advantage of
the growing interest and deployment opportunities associ-
ated with PEM. By enriching the features offered, B-CEM
would help broaden the market base and applicability of
PEM.

CONCLUSIONS

By enhancing the capabilities and security of electronic
mail, CEM could make e-mail an even more popular ser-
vice. Therefore, implementation of CEM deserves more
attention. We believe that B-CEM protocols can be imple-
mented with minimal modifications to existing e-mail sys-
tems and standard protocols. We further believe that the
trusted postmaster agent could prove to be a useful build-
ing block for other new and exciting applications in the
future. Actual implementations of the B-CEM protocols

could use clever cryptographic techniques to improve the
efficiency of the protocol. Some suggestions for efficient
implementations have already been pointed out throughout
the paper. Efficient implementations of S-CEM protocols
are possible. However, their applicability is limited to on-
line applications where both the sender and the recipient of
the message are available on-line. High speed implemen-
tations of ZKIPs are necessary for the S-CEM family of
protocols. We have not yet attempted to develop such a
ZKIP. This is an interesting issue that deserves more atten-
tion. Further research, especially in the area of fast ZKIP
techniques, is needed.
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