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Abstract. Current CAPTCHAs require users to solve objective ques-
tions such as text recognition or image recognition. We propose a class
of CAPTCHAs based on collaborative filtering. Collaborative filtering
CAPTCHAs allow us to ask questions that have no absolute answer;
instead, the CAPTCHAs are graded by comparison to other people’s
answers. We analyze the security requirements of collaborative filtering
CAPTCHAs and find that although they are not ready to use now, col-
laborative filtering CAPTCHAs are worthy of further investigation.

1 Introduction

This paper proposes a framework for CAPTCHAs using collaborative filtering.
By observing real-world trends made by human subjects, collaborative filtering
CAPTCHAs attempt to extract complex patterns that reflect human choices.
For example, humans who like a particular joke, such as a subtle pun, may also
enjoy other jokes that incorporate similar patterns of whimsy, word-play, and
ironic observation. We consider the proposition that these patterns are suffi-
ciently complex that no computer agent can predict these patterns with equal
accuracy. While one might naively believe that detecting patterns of humor is
beyond the capability of any machine, we show in this paper that computer
agents can do better than one might at first think. We conduct an experiment
that demonstrates that joke-affinity CAPTCHAs can be weakly effective. Our re-
sults show that collaborative filtering CAPTCHAs, while not ready to use now,
show promise beyond traditional CAPTCHA approaches and deserve further
examination.

Why should we study collaborative filtering CAPTCHAs? Because current
CAPTCHA research resembles an arms race between CAPTCHA developers and
CAPTCHA attackers. CAPTCHA developers propose schemes which they hope
are unbreakable, and CAPTCHA attackers break them. The text-recognition
CAPTCHA EZ-Gimpy exemplifies this cycle [2]. EZ-Gimpy requires humans to
transcribe an image containing a single English word. In 2003, Mori and Ma-
lik broke EZ-Gimpy with 87% success [10]. The Mori-Malik attack requires a
dictionary. EZ-Gimpy designers then proposed a variation on EZ-Gimpy called
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Gimpy-R which uses random character strings instead of English text, thus de-
feating a dictionary attack. Moy et al. broke Gimpy-R in 2004 with 78% success,
and EZ-Gimpy using the same technique with 99% success [11].

Using collaborative filtering can make CAPTCHAs more difficult to break.
Suppose we can develop a CAPTCHA where the attacker must derive
CAPTCHA answers from other humans instead of solving an objective machine
vision question such as text recognition. In theory, the only way to break such a
CAPTCHA would be for the attacker to perform a user study and analyze the
results, a very expensive proposition.

This paper contains the following contributions:

– We propose a collaborative filtering framework for CAPTCHAs.
– We propose new attack models on collaborative filtering CAPTCHAs.
– We give security requirements for input data to collaborative filtering

CAPTCHAs.
– We present the results of an experiment on collaborative filtering

CAPTCHAs.
– We give a list of open problems for further examination.

Section 2 describes collaborative filtering and its challenges. Section 3 outlines
how to use collaborative filtering to build a CAPTCHA. Section 4 explains using
Singular Vector Decomposition to predict user ratings. Section 5 describes ex-
periments using the Jester dataset. Section 6 analyzes attacks on collaborative
filtering CAPTCHAs. Section 7 lists related work, and Section 8 concludes with
open problems.

2 Collaborative Filtering

Collaborative filters, or recommender systems, use a database of user preferences
to predict items or topics a new user might like or find useful [3, 14]. For example,
Amazon allows users to rate items for sale on a scale from 1 to 10. A new
user, Alice, is compared to existing users based on purchase or browsing history.
Amazon compares the user preferences of neighbors, or users who are historically
similar to Alice, to predict new items Alice might like and then recommends
them.

Challenges in collaborative filtering include:

– Accuracy. The prediction of Alice’s ratings must be accurate in order for
the recommendations to be useful. Additionally, in a collaborative filtering
CAPTCHA, inaccurate predictions will cause humans to fail the CAPTCHA.

– Sparsity. For very large recommender systems (e.g., Amazon, the Internet
Movie Database, and Ebay), even a very prolific user might have preference
data for a very small percentage of the items in the system. Sparsity makes
predictions more difficult.

– Scalability. Because nearest-neighbor algorithms (to find users with similar
preferences) scale in the number of users and items, very large recommender
systems suffer scalability problems.
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– “Polluted” data. Malicious or apathetic users may enter incorrect preference
data, hampering the accuracy of prediction algorithms. Dellarocas has done
some work in this area to reject “outliers” — however, this approach has
the unwanted effect of unfairly rejecting users with eccentric tastes [5]. In
general, the collaborative filtering research concentrates on improving the
predictive accuracy in the absence of adversaries, so this challenge is not
well-studied in comparison with the rest.

In this work, we are primarily concerned with accuracy and polluted data.

3 Collaborative Filtering CAPTCHAs

Previous CAPTCHAs require users to solve cognitive tasks such as text recog-
nition and image recognition. Both of these tasks are currently subjects of ma-
chine vision research. Sophisticated machine vision attacks exist for text-based
CAPTCHAs; it is only reasonable to expect the machine vision community to
make progress in image recognition if these CAPTCHAs are adopted.

What if we could use challenge questions that have no absolute answer? Then
we could build a CAPTCHA where the user is correct so long as enough known
humans agree. Collaborative filtering allows us to do so. Collaborative filtering is
a way to aggregate data from many different human users so that we can easily
compare new data. The collaborative filtering approach differs from previous
approaches in that the CAPTCHA designer does not know the correct answer
initially, but measures the correct answer from human opinions. There are many
subjective topics we could use to build a CAPTCHA: however, finding a good
source of input data is an open problem for reasons we discuss below.

3.1 Sources of Data

To build a collaborative filtering CAPTCHA, we require a source of data that
evokes some aspect of our humanity that is difficult to quantify. For example:

– Humans recognize quality in art (such as movies, music, literature, or im-
ages), and computers do not.

– Art (visual art, music) evokes human emotion which may be unpredictable
by computers.

– Humans have philosophical leanings (political opinions, religious doctrines,
etc.) which are difficult to codify.

– Humans recognize humor in jokes, and computers do not.

Choosing a good source of data is difficult. For example, building a
CAPTCHA out of movie ratings presents two problems: movies are time-
consuming and expensive for users to watch and rate, and online oracles such as
the Internet Movie Database can be used by adversaries. Cultural bias can also
plague collaborative filtering CAPTCHAs: the filter may only make accurate
predictions for certain demographic groups. However, all existing CAPTCHAs
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(including those based on text and images) discriminate against a some de-
mographic. Visually impaired or illiterate people cannot pass a reading-based
CAPTCHA, for example.

3.2 Stages of the CAPTCHA

Given an appropriate topic that computers find difficult to evaluate, we can
construct a CAPTCHA based on collaborative filtering. A collaborative filtering
CAPTCHA goes through several phases:

– Training. In the training phase, a group of known humans rates documents
in the gauge set. The seed data or training data will be used to generate
predictions for new user who wish to take the CAPTCHA.

– Testing. The testing phase is entered whenever a new user wants to take
a CAPTCHA. Suppose Alice wants to take the CAPTCHA. We present a
strict subset of documents in the gauge set for Alice to rate. Based on Alice’s
ratings of the subset and the training data, we make predictions for Alice’s
ratings of the remainder of the gauge set. Alice then rates the remainder of
the gauge set. We now have actual and predicted ratings for the remainder
of the set. If the predicted ratings are close enough to the actual ratings,
Alice passes. The threshold for passing is an open research problem.

– Reseeding. If Alice passes as human, the CAPTCHA enters the reseeding
phase. Alice rates new documents that are not in the gauge set. If enough
new users rate these documents, the new documents can be used as a new
gauge set. Having dynamic data in the collaborative filter is important; rec-
ommendations and predictions of a small, static dataset are subject to attack.

Now we turn to the question of predicting ratings.

4 Using Singular Value Decomposition in Collaborative
Filtering

Singular Value Decomposition (SVD) is a numerical method for doing collabo-
rative filtering that separates user ratings by different features. A feature is an
abstract notion that falls implicitly out of the decomposition; features require no
special annotations in advance. Often, but not always, an abstract feature in the
SVD corresponds to a real-world property of the item being rated. For example,
one property of jokes is word-play. Users who find word-play humorous might
prefer puns, and the word-play property might correspond to a particular feature
in the decomposition. For the purposes of this experiment, the real properties
corresponding to the features are irrelevant.

If the ratings matrix A holds ratings of users for documents, we can use SVD
to decompose A: A = USV T . Aij is user i’s rating of document j. It is useful
to think of a row in U as a user’s response vector, where Uik is user i’s response
to feature k. S is the matrix of feature weights, or how important a feature is
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in determining the rating. S is 0 everywhere but the diagonal, where Skk is the
weight of feature k. V represents the amount of each feature in each document,
so Vjk is the amount of feature k in document j. Since Si�=j = 0,

Aij =
∑

k

UikSkkVjk

Because of the way the SVD is computed, the first entry in S is the largest,
so S11 � S22 � . . . � Snn. From this, we can estimate the ratings for a new
user if we know that user’s rating of the first document, R1. From the previous
equation, ignoring the new user’s responses to other features, we have

R1 = U1S11V11

We can then solve for U1, the user’s response to feature 1, and use that
to estimate the ratings of other documents. As more ratings are known, the
more feature responses we can estimate, and the more accurate the predictions
become.

4.1 Measuring Error

The Mean Absolute Error is the error metric used most often in collaborative
filtering literature. Let c be the number of jokes rated, pij be the prediction of
user i’s rating of joke j, and rij be the actual rating. Then MAE for user i is

MAE =
1
c

c∑
j=1

|rij − pij |

It is useful to normalize this metric to the range of possible ratings,
[rmax, rmin] [7].

NMAE =
MAE

rmax − rmin

4.2 Neighbors

Nearest-neighbor algorithms are commonly used to improve predictions using
SVD. One way to measure how similar two user preferences are is to measure
the distance between their preference vectors. Two users A and B are close if
the cosine between their preference vectors is close to 1.

cos θ =
A · B

‖A‖‖B‖
One immediate problem with using nearest-neighbor algorithms in a

CAPTCHA is that an adversary has fewer data points to guess in order to
cheat successfully. We discuss security problems in more detail in Section 6.
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5 Experiments with Collaborative Filtering CAPTCHAs

We have presented a class of CAPTCHAs based on collaborative filtering and
shown how to implement them. In this section, we conduct two experiments and
analyze the security requirements of collaborative filtering CAPTCHAs based
on the results.

5.1 A Joke-Based Collaborative Filtering CAPTCHA

We chose to prototype a proof-of-concept collaborative filtering CAPTCHA
based on jokes. The subject of jokes was chosen merely for convenience because
a large dataset of joke ratings is publically available [6].

While the choice of jokes as the basis for our collaborative filter allowed
us to prototype our system quickly, a collaborative filter based on jokes also
suffers from a number of flaws. Jokes are often culturally biased, they are hard
to generate by computer, and some jokes are offensive. As we discuss below,
despite these drawbacks, the use of a joke-based collaborative filter did produce
some interesting results and suggests that collaborative filtering deserves further
research as an approach for building CAPTCHAs.

There are several possible approaches using jokes to build a CAPTCHA:

– Pick the best joke from a small set.
– Pick the worst joke from a small set.
– Rate the joke.

The third approach, rating the joke, is the most useful because it is the
most general — the other two can be implemented based on the rating. If the
user’s assessment of the joke corresponds to the opinions of previous (human)
users, the user passes the challenge. We can then optionally ask the user to
rate new jokes and update the collaborative filter. Because this is a proof-of-
concept CAPTCHA and because, to the best of our knowledge, this is the first
collaborative filtering CAPTCHA, this experiment concentrated mainly on the
accuracy of the collaborative filter.

The Jester project The Jester project is a recommender system for jokes [6].
24953 users in the system rated the same 10 jokes, or gauge set, on a scale from
-10 (not funny) to 10 (funniest). Although up to 100 jokes were rated, we used
only ratings from jokes in the gauge set in this experiment because the gauge
set is dense.

To mitigate attacks on the collaborative filter, the data that users rate must
fulfill two requirements:

– It must be large or renewable. The Jester system uses 100 jokes. It is possible
to compose more jokes, however. If the data is too small, an adversary could
simply use a human to rate all the jokes and “replay” known human answers.
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– It must be uniformly distributed in quality. If the data does not follow a
uniform distribution, an adversary could simply guess the most frequently-
occurring rating.

Because neither of these requirements have an effect on the accuracy of pre-
dictions for legitimate users, we can disregard them for the purposes of predicting
ratings.

5.2 Experiments with the Jester Dataset

In this experiment, we use ratings from the first eight jokes in the gauge set to
predict ratings for the last two. We chose at random 100 users from 24953 to use
as the training set. This training data was used to compute the feature weight
and document matrices (S and V ) in the SVD. Recall that S gives the weight
of each feature, and V gives the amount of each feature in each document or
joke. Because the training data is dense, small and fixed in this experiment, we
avoided the problems of sparsity and scalability described in Section 2. Polluted
data will always be a challenge in collaborative filtering CAPTCHAs — there
is a trade-off between resistance to adversaries and unfairly failing users with
unconventional preferences.

For the other 24853 users (the test data), we used the S and V matrices
to predict the ratings of the last two jokes based on the ratings of the first 8.
Additionally, all the ratings were normalized linearly to fall between 0 and 1.

Because initial accuracy of the CAPTCHA in distinguishing humans from
machines does not depend on the third phase (reseeding) in a collaborative fil-
tering CAPTCHA, reseeding is unimplemented.

Results The results of using all the training data without nearest neighbor
algorithms to predict ratings for new users are shown in Figures 1 and 2. Figure 1
is a histogram of the cosine between the predicted ratings and the actual ratings
for the last two jokes in the gauge set. Figure 2 shows the histogram of the NMAE
for the predictions. The NMAE for a random prediction (distributed uniformly
over the range) is 0.333 [7]. The NMAE using all the training data for predictions
is 0.45, even higher than the expected NMAE for a random prediction.

Unfortunately, using the SVD decomposition of all 100 users in the training
data was too inaccurate. Because there is much variation in joke preferences, the
predictions were not good using all of the training data.

To improve predictions, we used only the ratings from the 10 nearest neigh-
bors. For each user in the test set, we compared the user ratings for the first 8
jokes to all of the training data, using the cosine as the metric to find the 10
nearest neighbors. The SVD on the 10 nearest neighbors was used to predict the
user’s ratings for the remaining 2 jokes in the gauge set. Figures 4 and 3 show
the results with nearest neighbor.

Figures 4 and 3 show that using nearest neighbors improves the predictions
significantly. The NMAE with nearest-neighbor is 0.34, approximately the same
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Fig. 1. A histogram of absolute values of cosines between predicted and actual
ratings using SVD without nearest neighbor.

as the expected NMAE for random predictions. The NMAE is 0.187 using Eigen-
taste, the collaborative filtering algorithm developed by the designers of the
Jester system [7]. The Eigentaste system uses Principal Component Analysis
(PCA) in lieu of SVD. PCA allows dimensionality reduction for fast offline clus-
tering of user preferences. Because this is a proof-of-concept CAPTCHA and the
training data is small, PCA is unimplemented.

5.3 Visual Art and Emotions

In this section we describe a speculative collaborative filtering CAPTCHA that
requires humans to specify emotions evoked by visual images. One measure for
comparing emotions is the Russell circumplex model of affect, illustrated in Fig-
ure 5 [13]. The two principal axes are excitement and pleasure. Russell claimed
these axes are orthogonal. For example, the emotion distress implies high ex-
citement and displeasure, and so distress falls in the upper left quadrant of the
model. However, low excitement and displeasure correspond to depression in the
lower left quadrant. Emotions that are close to each other on the model are
perceptually similar to humans, and vice versa. Opposite, or most dissimilar,
emotions are diagonal to each other on the model [12].

To devise a CAPTCHA, we can require the user to rate the emotions of
images as before and compare the predicted rating to the actual rating. However,
SVD assumes a linear scale, not a circular one. As a first step, we can simply
use the average rating (or emotion) to predict the rating of a new user, treating
emotions as vectors on the unit circle.



74 M. Chew and J.D. Tygar

Fig. 2. A histogram of NMAE using SVD without nearest neighbor.

In a small experiment, we chose seven images from an online art gallery,
and three random art images. A random art image is simply the result of col-
oring a random expression in two variables, where the color at a point (x, y) is
determined by the value of the expression at that coordinate, as illustrated in
Figure 6. Random art is a convenient source of input data to the collaborative
filter because it is easy to generate.

Four test subjects chose emotions that best corresponded to the image. How-
ever, many of the images were not sufficiently evocative. All of the subjects had
difficulty labelling the random art images. Additionally, the four test subjects
differed widely on all but one image, where three out of four picked emotions in
the same quadrant. Consequently, the average answers were not very meaning-
ful. The result of this small experiment is that the data source that humans rate
must be evocative. We also need numerical methods for collaborative filtering
that work on higher-dimension scales.

6 Security Against Adversaries

Collaborative filtering CAPTCHAs are predicated on the unpredictability of
human opinions. This condition could fail in several scenarios:

– The attacker (human or machine) infiltrates the training data. Then, to pass
the CAPTCHA, the attacker can simply rate the gauge set as she did during
the training phase. If training users complete the training phase remotely,
we can require them to pass another type of CAPTCHA (e.g., an image
recognition CAPTCHA) before entering the training phase.
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Fig. 3. A histogram of absolute values of cosines between predicted ratings and
actual ratings from the SVD predictions with nearest neighbor.

– There is not enough variation in the jokes, i.e., the jokes are consistently no
good (or conversely, the jokes are all very funny). In this case, the attacker
simply rates each joke the average rating (which is predictable for a small
number of jokes) to achieve a lower NMAE than random ratings. To defend
against this attack, the ratings of the jokes in the gauge set must be uni-
formly distributed. The training phase can accomplish this by starting out
with a large gauge set and eliminating jokes until the ratings are uniformly
distributed. Similarly, in the reseeding phase, only new jokes that preserve
the distribution are admitted to the gauge set.

– The attacker guesses a response vector that is consistent with the training
data. The attacker then uses the reseeding phase to infiltrate the new gauge
set. Of the attacks listed, this is the most insidious. The defense against this
attack can include:

• Introducing new jokes very frequently, so the gauge set is constantly
changing.

• Increasing the size of the gauge set.

From the experiments discussed in the previous section, there are several
requirements on the data used for collaborative filtering:

– Uniform. Ratings for the data must be uniformly distributed. If the ratings
show a bias (as in the case for the Jester dataset), an attacker can use that
bias to pass more often than would be expected at random.
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Fig. 4. A histogram of NMAE using nearest neighbor predictions.

– Evocative. The data must be sufficiently evocative. In the case of the
CAPTCHA outlined in Section 5.3, the emotional effect of the images used
was often unclear to the participants, diminishing the meaning of the ratings.

– Dynamic. The data must be renewable, or else the same data will appear to
an attacker many times. In this case, a correct guess from the attacker will
be very valuable, since the attacker can replay it many times.

Another important consideration is that collaborative filtering without using
nearest neighbor algorithms failed. The purpose of predicting ratings with the
entire training set instead of a subset was to amplify the difficulty of attack.
Guessing or controlling the SVD of the entire training set is more difficult than
doing the same for a small number of neighbors.

6.1 Exploiting Bias in Ratings

Let X be the user’s ratings, Y be the predicted ratings, and [rmin, rmax] be the
range of ratings. In this section, we derive the NMAE between X and Y for
three cases:

1. X and Y are uniform random variables. The NMAE for this case is presented
in the Jester paper, but we generalize the derivation and show it to be
independent of the range [7].

2. X and Y are normally distributed with mean µ and variances σ2
x and σ2

y ,
respectively. The analysis of this case is summarized from the Jester paper.

3. X is normally distributed with mean µ and variance σ2, Y = µ. This com-
parison has not been presented previously.
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Fig. 5. Russell’s circumplex model of emotion.

Uniform distribution Let X and Y be uniform random variables. The probability
distribution of the error function X −Y is triangular, ranging from [rmin, rmax],
where f(x) = x+20 for rmin ≤ x ≤ 0, and f(x) = 20−x for 0 ≤ x ≤ rmax. The
probability distribution of the absolute error |X − Y | gives the density function
for the MAE. Taking the absolute value folds the function over the y-axis, giving
the f(x) = 20 − x. Normalizing to integrate to 1, f(x) = 0.1 − 0.005x. Taking
the integral gives E[MAE] to be

∫ rmax

rmin

f(x)xdx =
∫ rmax

rmin

0.1x − 0.005x2dx =
rmax − rmin

3

Normalizing the MAE to the range gives NMAE=0.333, as expected.

Normal distribution Let X and Y be normally distributed random variables with
mean µ and variances σ2

x and σ2
y, respectively We can use the moment-generating

function to model their difference [8]:

MX−Y (t) = MX(t)M−Y (t) = e
1
2σ2

xt2+µte
1
2 σ2

yt2−µt = e
1
2 (σ2

x+σ2
y)t2

Thus, the difference is also a normal distribution with mean 0 and variance
σ2

x + σ2
y. The density function for the MAE |X − Y | is then

f(x) =
2√

2π(σ2
x + σ2

y)
e−x2/(2(σ2

x+σ2
y))
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Fig. 6. A random art image.

Suppose σx = σy = σ. Then E[MAE] is
∫ ∞

0

1
σ
√

π
e−x2/4σ2

xdx =
2σ√

π

Normalizing to the range gives an NMAE of 2σ√
π(rmax−rmin)

.

Normal X, constant Y Let X be normally distributed with variance σ2 and
mean µ, and Y = µ. Then the density function is exactly the standard normal
distribution with mean 0 and variance σ2, and the expected MAE is

∫ ∞

0

2√
2πσ

e−x2/2σ2
xdx =

√
2σ√
π

Normalizing to the range gives an NMAE of
√

2σ√
π(rmax−rmin)

. In the Jester
data set, the average standard deviation is σ ≈ 5, and the range is 20. Table 1
below summarizes the NMAE for different prediction models.

From Table 1, we can see that guessing the mean is almost as good a predictor
as SVD. The cost of this attack is finding the mean. The adversary can do this
by using a human to rate many documents, and estimating the mean from that
distribution. The number of ratings needed to make a good estimate of the mean
depending on the variance of the ratings. To be 90% confident that the true mean
is within 3% of the sample mean in the Jester data set, the attacker would need
to rate about 187 documents with σ = 5 and a range of 20:
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Table 1. Normalized Mean Absolute Error (NMAE) for different prediction
models.

Distribution E[NMAE] Jester NMAE

Uniform random 0.33 0.33
Normal 2√

π(rmax−rmin)
σ 0.28

Uniform mean
√

2√
π(rmax−rmin)

σ 0.20

Eigentaste — 0.187
SVD without clustering — 0.45
SVD with clustering — 0.34

n =
(

zα/2σ

.03(rmax − rmin)

)2

= 187

This attack is simple and effective. To prevent it, a combination of a uniform
distribution of ratings and better predictive algorithms is required.

7 Related Work

The ESP Game A related CAPTCHA-like scheme is the ESP Game developed
at CMU [17]. The ESP Game requires two simultaneous users to label 15 images
identically within 2 minutes. Moreover, there is a set of “taboo” words that both
players are forbidden to use. The ESP Game is not described as a CAPTCHA.
One approach to build a CAPTCHA out of the ESP Game would be to accept
both players as human if they won the game.

The ESP Game is like a collaborative filtering CAPTCHA in that user data
is used to grade the CAPTCHA; however, it requires online interaction, perfect
matching between players, and only one other user’s data is used to grade the
CAPTCHA. Because the ESP Game was not designed as CAPTCHA, it is not
surprising that using it as a CAPTCHA would result in a number of problems.
These problems include:

– Latency. The ESP Game requires online interaction, so multiple players must
simultaneously play the game. In addition, the time to take the ESP game
depends on other players, who may be behind a slow network connection
or malicious. A collaborative filtering CAPTCHA does not require online
interaction with other human users.

– Collusion. Only two colluding players are necessary to fool the system. An
adversary can automatically enter the game multiple times until she is paired
with herself; then, winning the game is trivially easy. Furthermore, such an
attack leads to pollution of the answer database, which is used to label images
correctly in an image recognition CAPTCHA. In a collaborative filtering
scheme, an adversary must work with her nearest neighbors.
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– Unfairness. An adversary can automatically cause a legitimate player to lose
by simply entering nonsense answers. In a collaborative filtering scheme, such
an adversary would simply fail the CAPTCHA.

A more general approach to collaborative filtering CAPTCHAs sidesteps
some of these problems.

Turing Game The Turing Game designed by Berman and Bruckman is one such
test, though it is not a CAPTCHA because it is not automated. In the Turing
game, the players are separated into the panelists and the audience [1]. The
panelists pretend to be members of a particular group (such as women), and the
audience of diverse gender asks questions of the panel. After the questioning,
audience members vote on who is telling the truth.

SparkLife SparkLife (community.sparknotes.com) takes a different approach.
It asks a series of fixed, multiple choice questions to determine attributes such
as gender, intelligence, all-American-ness, stress level, and greed [15]. The algo-
rithms used for analyzing the answers are not publically known.

8 Discussion

We have proposed a framework for collaborative filtering CAPTCHAs and per-
formed a preliminary security analysis of attack models on the filter. We have
shown that collaborative filtering CAPTCHAs require nearest neighbor algo-
rithms to be useful. We have proposed a scheme for updating the collaborative
filter to resist attacks and discussed security considerations for the data used in
the filter.

The results of the experiments are inconclusive — however, they indicate
that collaborative filtering CAPTCHAs are worthy of further investigation.

Open problems include:

– Finding an automatically renewable source of data that users can rate. Jokes
must be conceived by humans, for example, but random art images are easy
for machines to generate. The problem with random art images, however, is
that they may not be sufficiently evocative (Section 5.3).

– Specialized collaborative filtering CAPTCHAs that are targeted at a specific
demographic or group of people. Specialized knowledge could aid collabora-
tive filtering CAPTCHAs. For example, a particular dataset (e.g., jokes) elic-
its different responses from different personality types or demographics. An
affinity for puns might indicate linguists, or lingo-philes. A CAPTCHA based
on movie data (e.g., user ratings and genre information from the MovieLens
project) could target movie buffs [9].

– Using collaborative filtering to improve data sources for other CAPTCHAs.
Image recognition CAPTCHAs require a human user to recognize im-
ages [2, 4, 16]. Image recognition CAPTCHAs have the problem of mis-
labelling: images in the database are indexed under meaningless labels [4].
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Chew and Tygar describe CAPTCHAs requiring three tasks: naming the
image by typing the label, distinguishing images, and identifying the anoma-
lous image out of a set. Because all images are culled from Google’s image
database, not all of the images are labelled correctly. The mislabelling prob-
lem causes humans to fail CAPTCHAs. We can use collaborative filtering to
eliminate or reduce poorly labelled images.
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