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Abstract Consider two organizations that wish to privately match data. They want to find
common data elements (or perform a join) over two databases without revealing
private information. This was the premise of a recent paper by Agrawal, Ev-
fimievski, and Srikant. We show that Agrawal et al. only examined one point
in a much larger problem set and we critique their results. We set the problem
in a broader context by considering three independent design criteria and two
independent threat model factors, for a total of five orthogonal dimensions of
analysis.

Novel contributions include a taxonomy of design criteria for private match-
ing , a secure data ownership certificate that can attest to the proper ownership
of data in a database, a set of new private matching protocols for a variety of
different scenarios together with a full security analysis. We conclude with a list
of open problems in the area.

1. Introduction

Agrawal, Evfimievski, and Srikant recently presented a paper [Agrawal
et al., 2003] that explores the following private matching problem: two par-
ties each have a database and they wish to determine common entries with-
out revealing any information about entries only found in one database. This
paper has generated significant interest in the research community and techni-
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cal press. While the Agrawal/Evfimievski/Srikant (AgES) protocol is correct
within in its assumptions, it is not robust in a variety of different scenarios.
In fact, in many likely scenarios, the AgES protocol can easily be exploited
to obtain a great deal of information about another database. As we discuss
in this paper, the private matching problem has very different solutions de-
pending on assumptions about the different parties, the way they interact, and
cryptographic mechanisms available. Our paper discusses flaws in the AgES
protocol, presents that protocol in the context of a framework for viewing pri-
vate matching and a family of possible protocols, and gives a number of new
techniques for addressing private matching, including a flexible powerful Data
Ownership Certificate that can be used with a variety of matching protocols.

The private matching problem is a practical, constrained case of the more
general (and generally intractable) challenge of secure multi-party computa-
tion . Private set matching is a simple problem that is at the heart of numerous
data processing tasks in a variety of applications. It is useful for relational
equijoins and intersections, as well as for full-text document search, coop-
erative web caching, preference matching in online communities, and so on.
Private matching schemes attempt to enable parties to participate in such tasks
without worrying that information is leaked.

In this paper we attempt a holistic treatment of the problem of two-party
private matching. We lay out the problem space by providing a variety of
possible design goals and attack models. We place prior work in context, and
present protocols for points in the space that had been previously ignored. We
also point out a number of additional challenges for future investigation.

1.1 Scenarios

We begin our discussion with three scenarios, which help illustrate various
goals of a private matching protocol.

Our first scenario comes from multi-party customer relationship manage-
ment in the business world. Two companies would like to identify their com-
mon customers for a joint marketing exercise, without divulging any additional
customers. In this scenario, we would like to ensure that (a) neither party learns
more than their own data and the answer (and anything implied by the pair),
and (b) if one party learns the results of the match, both parties should learn it.
Agrawal, et al. discuss a special instance of this case in their work [Agrawal
et al., 2003], which they call semi-honesty , after terminology used in secure
multi-party literature [Goldreich, 2002]. In particular, the two companies are
assumed to honestly report their customer lists (or, more generally, the lists
they wish to intersect), but may try otherwise to discover additional informa-
tion about the other’s customer list. The semi-honest scenario here rests on the
presumption that a major corporation’s publicity risk in being detected lying
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outweighs its potential benefit in one-time acquisition of competitive infor-
mation. Below, we comment further on difficulties raised by this notion of
semi-honesty.

In many cases, we do not desire symmetric exchange of information. As
a second example, consider the case of a government agency that needs to
consult a private database. Privacy and secrecy concerns on the part of the
government agency may lead it to desire access to the private database without
revealing any information about the nature of the query. On the other hand,
the database owner may only want to release information on a “need-to-know”
basis: it may be required by law to release the answers to the specific query,
but may be unwilling to release any other information to the government. In
short, a solution to the situation should enable the government to learn only the
answer to its query, while the database owner will learn nothing new about the
government. In this asymmetric scenario, we need a different choice than (b)
above.

Finally, we consider a scenario that could involve anonymous and actively
dishonest parties. Online auction sites are now often used as a sales channel for
small and medium-sized private businesses. Two competing sellers in an online
auction site may wish to identify and subsequently discuss the customers they
have in common. In this case, anonymity of the sellers removes the basis
for any semi-honesty assumption, so guaranteed mechanisms are required to
prevent one party from tricking the other into leaking information.

Each of these examples has subtly different design requirements for a pri-
vate matching protocol. This paper treats these examples by systematically
exploring all possible combinations of security requirements along a number
of independent design criteria.

1.2 Critique of AgES

In their paper [Agrawal et al., 2003], Agrawal, Evfimievski, and Srikant
consider the first scenario listed above, building on an earlier paper by Hu-
berman et al. [Huberman et al., 1999]. Here is an informal summary of the
AgES Set Intersection Protocol result; we discuss it more formally below in
Section 3.

Agrawal, et al. suggest solving the matching problem by introducing a pair
of encryption functions E (known only to A) and E′ (known only to B) such
that for all x, E(E′(x)) = E′(E(x)). Alice has customer list A and Bob has
customer list B. Alice sends Bob the message E(A); Bob computes and then
sends to Alice the two messages E′(E(A)) and E′(B). Alice then applies
E to E′(B), yielding (using the commutativity of E and E′) these two lists:
E′(E(A)) and E′(E(B)). Alice computes E′(E(A)) ∩ E′(E(B)). Since
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Alice knows the order of items in A, she also knows the the order of items in
E′(E(A)) and can quickly determine A ∩ B.

Two main limitations are evident in this protocol. First, it is asymmetric: if
we want both parties to learn the answer, we must trust Alice to send A∩B to
Bob. This asymmetry may be acceptable or even desirable in some scenarios,
but may be undesirable in others.

Second, we find the AgES assumption of semi-honesty to be hard to imagine
in a real attack scenario. Any attacker who would aggressively decode proto-
col messages would presumably not hesitate to “spoof” the contents of their
queries. If we admit the possibility of the attacker spoofing queries, then the
AgES protocol is not required; a simpler hash-based scheme suffices. In this
scheme (also suggested by Agrawal, et al.) the two parties hash the elements
of their lists h(A) and h(B) and then compute the intersection of those two
lists of hashes. Later in this paper, we augment this hash-based protocol with
an additional mechanism to prevent spoofing as well.

1.3 A broader framework

Below, we consider a broader framework for thinking about private match-
ing.

First, we break down the protocol design space into three independent cri-
teria :

Design criteria

protocols that leak no information (strong) vs. protocols that leak some
information (weak)

protocols that protect against spoofed elements (unspoofable) vs. proto-
cols that are vulnerable (spoofable).

symmetric release of information vs. asymmetric release (to only one
party).

We will also consider two different dimensions for threat models:

Threat models

semi-honest vs. malicious parties

small vs. large data domains

We discuss the design criteria in more detail in the next section and cover
the threat models below in Section 3.
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2. Problem Statement

We define the private matching problem between two parties as follows. Let
the two parties Alice and Bob have respective sets A and B of objects in some
domain D. Suppose Alice wants to pose a matching query Q ⊆ D to Bob.
We call Alice the initiator of the query and Bob the recipient of the query.
We say Q is valid if Q ⊆ A and spoofed otherwise. A matching computes
P = Q ∩ B or ⊥; note that ⊥ is a message distinguishable from the set ∅, and
can be thought of as a warning or error message.

We elaborate upon the three design criteria for private matching described
in the previous section:

We say that a matching protocol is strong if any party can learn only: P ,
any information that can be derived from P and this party’s input to the
protocol, the size of the other party’s input, and nothing else; otherwise
the protocol is weak with respect to the additional information learnable.

We define a matching protocol to be unspoofable if it returns ⊥ or Q ∩
A ∩ B for all spoofed Q. Otherwise it is spoofable.

We say that a matching protocol is symmetric if both parties will know
the same information at any point in the protocol. Otherwise it is asym-
metric.

For each of these three dimensions, a bit more discussion is merited. We
begin with the strong/weak dichotomy. After executing a protocol, a party can
derive information by computing functions over its input to the protocol and
the protocol’s output. An example of such derived information is that a party
can learn something about what is not in the other party’s set, by examining
its input and the query result. Since any information that can be computed in
this way is an unavoidable consequence of matching, we use P to denote both
P and the derived information throughout our paper. Note that weak proto-
cols correspond to the notion of semi-honesty listed above — weak protocols
allow additional information to be leaked, and only make sense when we put
additional restrictions on the parties — typically, that they be semi-honest. In
contrast, strong protocols allow malicious parties to exchange messages. Note
that we allow the size of a party’s input to be leaked; the program of each
party in a protocol for computing a desired function must either depend only
on the length of the party’s input or obtain information on the counterpart’s
input length [Goldreich, 2002].

For the spoofable/unspoofable dimension, there are scenarios where a proto-
col that is technically spoofable can be considered effectively to be unspoofa-
ble. To guarantee that a protocol is unspoofable, it requires the protocol to
detect spoofed queries. Given such a mechanism, either of the following two
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responses are possible, and maintain the unspoofable property: (a) returning
⊥, or (b) returning Q ∩ A ∩ B. When a party lacks such a detection mech-
anism, it cannot make informed decision as when to return ⊥. However, in
some situations, the party may be expected to return the set Q ∩ A ∩ B with
high probability, regardless of whether the query is spoofed or not. This may
happen when it is very difficult to spoof elements. We will give an example of
this scenario later.

It is also useful to consider the the issue of symmetry vs. asymmetry for the
threat models covered in Section 3. In the semi-honest model, parties follow
the protocols properly, and so symmetry is enforced by agreement. However,
in a malicious model, the parties can display arbitrary adversarial behavior. It
is thus difficult to force symmetry, because one party will always receive the
results first. (A wide class of cryptographic work has revolved around “fair
exchanges” in which data is released in a way that guarantees that both parties
receive it, but it is not clear if those concepts could be efficiently applied in the
private matching application.)

2.1 Secure multi-party computation

The private matching problem is a special case of the more general prob-
lem from the literature called secure multi-party computation. We now give a
brief introduction to secure multi-party computation in the hope of shedding
light on some issues in private matching. In a secure m-party computation,
the parties wish to compute a function f on their m inputs. In an ideal model
where a trusted party exists, the m parties give their inputs to the trusted party
who computes f on their inputs and returns the result to each of the parties.
The results returned to each party may be different. This ideal model captures
the highest level of security we can expect from multi-party function evalu-
ation [Canetti, 1996]. A secure multi-party computation protocol emulates
what happens in an ideal model. It is well-known that no secure multi-party
protocol can prevent a party from cheating by changing its input before a pro-
tocol starts [Goldreich, 2002]. Note however, that this cannot be avoided in
an ideal model either. Assuming the existence of trapdoor permutations, one
may provide secure protocols for any two-party computation [Yao., 1986] and
for any multi-party computation with honest-majority [Goldreich et al., 1987].
However, multi-party computations are usually extraordinarily expensive in
practice, and impractical for real use. Here, our focus is on highly efficient
protocols for private matching, which is both tractable and broadly applicable
in a variety of contexts.
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3. Threat Models

We identify two dimensions in the threat model for private matching. The
first dimension concerns the domain of the sets being matched against. A do-
main can be small, and hence vulnerable to an exhaustive search attack , or
large, and hence not vulnerable to an exhaustive search attack.

If a domain is small, then an adversary Max can enumerate all the elements
in that domain and make a query with the entire domain to Bob. Provided
Bob answers the query honestly, Max can learn the entirety of Bob’s set with
a single query. A trivial example of such a domain is the list of Fortune 500
companies; but note that there are also somewhat larger but tractably small
domains like the set of possible social security numbers.

A large uniformly distributed domain is not vulnerable to an exhaustive
search attack. We will refer to this type of domain simply as large in this paper.
An example of such a domain is the set of all RSA keys of a certain length. If a
domain is large, then an adversary is limited in two ways. First, the adversary
cannot enumerate the entire domain in a reasonable single query, nor can the
adversary repeatedly ask smaller queries to enumerate the domain. In this way
the adversary is prevented from mounting the attack described above. Second,
it is difficult for her to query for an arbitrary individual value that another party
may hold, because each party’s data set is likely to be a negligible-sized subset
of the full domain.

The second dimension in the threat model for private matching captures the
level of adversarial misbehavior. We distinguish between a semi-honest party
and a malicious party [Goldreich, 2002]. A semi-honest party is honest on
its query or data set and follows the protocol properly with the exception that
it keeps a record of all the intermediate computations and received messages
and manipulates the recorded messages in an aggressively adversarial manner
to learn additional information.1 A malicious party can misbehave in arbitrary
ways: in particular, it can terminate a protocol at arbitrary point of execution or
change its input before entering a protocol. No two-party computation protocol
can prevent a party from aborting after it receives the desired result and before
the other party learns the result. Also no two-party computation protocol can
prevent a party from changing its input before a protocol starts.

Hence we have four possible threat models: a semi-honest model with a
small or large domain, and a malicious model with a small or large domain. In
the rest of the paper, we base our discussion of private matching protocols in
terms of these four threat models.

3.1 Attacks

In this section we enumerate a number of different attacks that parties might
try to perform to extract additional information from a database. In the scenar-
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ios below, we use the notation A and B to denote parties, and A is trying to
extract information from B’s database.

Guessing attack: In this attack, the parties do not deviate from the pro-
tocol. However, A attempts to guess values in B’s database and looks
for evidence that those values occur in B’s database. Typically, A would
guess a potential value in B’s database, and then look for an occurrence
of the hash in B’s database. Alternatively, A could attempt to decrypt
values in a search for an encrypted version of a particular potential value
in B’s database (following the pattern in the AgES protocol.) Because
of the limitations of this type of attack, it is best suited when the domain
of potential values is small. (A variant of this attack is to try all potential
values in the domain, an exhaustive search attack.)

Guess-then-spoof attack: In this attack, the parties deviate from the
protocol. As in the guessing attack, A generates a list of potential values
in B’s database. In the spoofing attack , A runs through the protocol
pretending that these potential values are already in A’s database. Thus
A will compute hashes or encrypt, and transmit values as if they really
were present in A’s database. Because this attack involves a guessing
element, it is also well suited for small domains of potential database
values (e.g. social security numbers, which are only 10 digits long).

Collude-then-spoof attack: In this attack, A receives information about
potential values in B’s database by colluding with outside sources. For
example, perhaps A and another database owner C collude by exchang-
ing their customer lists. A then executes a spoofing attack by pretending
that these entries are are already on its list. As in guess-then-spoof at-
tack, A computes hashes or encrypts, and transmits values as if they were
really present in A’s database. Since A is deriving its information from
third party sources in this attack, it is suited for both small and large
domains of potential database values. (N.B.: we group both the guess-
then-spoof attack and the collude-then-spoof attack together as instances
of spoofing attacks. Spoofing attacks occur in the malicious model; in
the semi-honest model they can not occur.)

Hiding attacks: In a hiding attack, A only presents a subset of its cus-
tomer list when executing a matching protocol, effectively hiding the
unrevealed members. This paper does not attempt to discuss defenses
against hiding attacks.

Although we would like to prevent all collusion attacks involving malicious
data owners, there are limits to what we can accomplish. For example, if Al-
ice and Bob agree to run a matching protocol, nothing can prevent Bob from
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simply revealing the results to a third party Charlie. In this case, Bob is acting
as a proxy on behalf of Charlie, and the revelation of the results occurs out-
of-band from the protocol execution. However, we would like to resist attacks
where Bob and Charlie collude to disrupt the protocol execution or use inputs
not otherwise available to them.

4. Terminology and Assumptions

We begin by assuming the existence of one-way collision resistant hash
functions [Menezes et al., 1996] . A hash function h(·) is said to be one-
way and collision resistant if it is difficult to recover M given h(M), and it is
difficult to find M ′ �= M such that h(M ′) = h(M). Let SIGN(·, ·) be a public
key signing function which takes a secret key and data and returns the signature
of the hash of the the data signed by the secret key. Let VERIFY(·, ·, ·) be the
corresponding public key verification function which takes a public key, data,
and a signature and returns true if the signature is valid for the data and false
otherwise. For shorthand, we denote {P}sk as the digital signature signed by
the secret key sk on a plaintext P . The function isIn(·, ·) takes an element
and a set and returns true if the element is in the set and false otherwise.

The power function f : KeyF × DomF → DomF where f defined as
follows:

fe(x) ≡ xe mod p

is a commutative encryption [Agrawal et al., 2003]:

The powers commute:

(xd mod p)e mod p ≡ xde mod p ≡ (xe mod p)d mod p

Each of the powers fe is a bijection with its inverse being f−1
e ≡ fe−1 mod q.

where both p and q = (p − 1)/2 are primes.
We use the notation e

r← S to denote that element e is chosen randomly
(using a uniform distribution) from the set S.

We assume there exists an encrypted and authenticated communication chan-
nel between any two parties.
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1 Alice’s local computation:

(a) Qh := {h(q) : q ∈ Q}.

(b) eA
r← KeyF .

(c) QeA := {feA(qh) : qh ∈ Qh}.

2 Bob’s local computation:

(a) Bh := {h(b) : b ∈ B},

(b) eB ←r KeyF .

(c) BeB := {feB (bh) : bh ∈ Bh}.

3 Alice→ Bob: QeA .

4 Bob’s local computation:
QeA,eB := {(qeA , feB (qeA)) : qeA ∈ QeA}.

5 Bob→ Alice: BeB , QeA,eB .

6 Alice’s local computation:

(a) Q
′
eA,eB

:= ∅, P := ∅
(b) BeB ,eA := {feA(beB) : beB ∈ Be}.

(c) For every q ∈ Q, we compute
qeA = feA(h(q)), and find the pair
(qeA , qeA,eB ) ∈ QeA,eB ; given this we let
Q′

eA,eB
:= Q′

eA,eB
∪ {(q, qeA,eB )}.

(d) For every (q, qeA,eB ) ∈ Q
′
eA,eB

,
if isIn(qeA,eB ,BeB,eA), thenP :=
P ∪ {q} .

7 Output P .

Figure 3.1. AgES protocol
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5. Techniques

We present three matching protocols in this section: the trusted third party
protocol , the hash protocol , and the AgES protocol [Agrawal et al., 2003]. In
the next section, we describe a data ownership certificate mechanism that can
be combined with all three protocols to despoof all of the original protocols
even in threat models with small domains.

5.1 Trusted Third Party Protocol (TTPP)

Suppose Alice and Bob trust a third party Trudy. Alice and Bob can compute
their private matching through Trudy. Alice (resp. Bob) sends her query Q
(resp. his data set B) to Trudy, and Trudy computes the intersection P of the
two sets. Trudy then returns the result to both parties in the symmetric case, or
to one of the parties in the asymmetric case.

We discuss the security of the TTPP in Section 7.

5.2 Hash Protocol (HP)

In this section, we present a Hash Protocol that do not require a trusted third
party . In the hash protocol, Alice sends Bob her set of hashed values. Bob
hashes his set with the same hash function, and computes the intersection of
the two sets. Bob may send Alice the result based on their prior agreement.

We discuss the security of the hash protocol in Section 7.

5.3 The AgES protocol

We gave a summary of the AgES protocol in Section 1.2. Now we present
the complete version of the protocol in Figure 3.1. For consistency we adapt
this protocol to our notation, but the essence of the protocol remains the same
as the original paper.

We discuss the security of the AgES protocol in Section 7.

6. Data Ownership Certificate (DOC)

An especially difficult attack for private matching to handle is the spoofing
problem. In this section, we propose a new approach to address spoofing: the
use of Data Ownership Certificates. The idea is to have the creator of data
digitally sign the data in a particular way so that parties that control databases
that include the data can not spoof data. For example, consider the case of
two companies each of which wants to find out as much as possible about the
other’s customer list. If one of the companies has access to a list of all residents
in a particular area, a straightforward spoofing attack is quite simple — it could
simply create false entries corresponding to a set of the residents. If any of
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those residents were on the other company’s customer list, private matching
would reveal their membership on that list. However, if the companies are
obligated to provide digitally signed entries, this type of spoofing would be
eliminated: neither of the companies would be able to falsify entries.

The above sketch is not sufficient, however, because it still leaves open the
possibility that corrupt companies could broker in digitally signed data entries.
For example, if customer E is a legitimate customer of firm F , we would have
the possibility that F might try to trade or sell G’s digitally signed entry to A.
Then A would be able to falsely claim that G was a customer and during private
matching, steal information through a spoofing attack. Below, we discuss an
architecture for data ownership certificates that resists both regular spoofing
attacks and colluding spoofing attacks .

Data Ownership Certificates do require more work on the part of individuals
creating data, and they are probably only practical in the case of an individual
who uses his or her computer to submit information to a database. Despite
the extra work involved, we believe that data ownership certificates are not
far-fetched. In particular, the European Union’s Privacy Directive [Parliament,
1995] requires that individuals be able to verify the correctness of information
about them and control the distribution of that information. Data Ownership
Certificates give a powerful technical mechanism supporting that distribution.
Similarly, Agrawal, Kieran, Srikant, and Xu have recently argued for a type
of ”Hippocratic Database” that would provide similar functionality [Agrawal
et al., 2002]. Data Ownership Certificates would work well with these Hippo-
cratic Databases.

Now we begin a formal presentation of Data Ownership Certificates (DOC).
A Data Ownership Certificate is an authorization token which enables a set
owner to prove it is a legitimate owner of some particular data. The first goal
of the DOC is to prevent spoofing in a small domain. Data Ownership Certifi-
cates prevent spoofing by ‘boosting” the size of the small domain D to a larger
domain D × S, where S is the domain of the DOCs. The intuition is that by
expanding the domain, DOCs make the probability of guessing a correct value
negligible in the cryptographic sense and protect database owners from guess-
then-spoof attacks. Now, if an attacker wants to spoof a particular value, e.g.
John’s information, the attacker needs to correctly guess the associated DOC
as well.

A second goal of Data Ownership Certificates is access control. A DOC is
essentially a non-transferable capability issued by the originator of data to a
database owner. We refer to the originators of data as active entities. We say
that an active entity E authorizes a set owner O sharing access to its informa-
tion d when E issues O a DOC CO

d for d. Ideally, a common element between
two databases should be discovered only when both databases have been au-
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thorized with DOCs by the corresponding active entity for that element. More
precisely, we require two security properties from Data Ownership Certificates:

Confidentiality: If Bob is not an authorized owner of d, Bob should not
be able to learn that Alice possesses d if he runs a matching protocol
directly with Alice.

Authenticity: If Bob is not an authorized owner of d and Alice is an au-
thorized owner of d, Bob should not be able to pollute Alice’s matching
result, i.e., Bob cannot introduce d into the matching result.

We find that confidentiality is difficult to achieve. We thought of two ap-
proaches to do the access control. First, Alice checks whether Bob has the
authorization before she gives an element v to Bob. It seems essential that
Alice obtains some knowledge k that links the access controlled object v to
requester Bob before granting the access. This requester-specific knowledge k
reveals at least partial information of what element Bob has. It is then only fair
that Bob checks for Alice’s permission to access k. This leads to an infinite
reduction. Second, Alice can give Bob a box which contains John’s informa-
tion d. The box is locked by John. Bob can only open the box if he has the
key. This implies that John uses a lock for which he knows Bob has the key.
This kind of precomputation on John’s part is not desirable. We leave this as
an open problem for future work and we relax our requirement for access con-
trol in this paper. We propose a third solution that allows two parties to learn
their common element d if both of them have d and some common nonce for d
instead of some requester specific access token. We refer to the goal of DOC
as reduced confidentiality requirement.

6.1 Our instantiation of DOCs

Our instantiation of Data Ownership Certificates consists of two parts: a
common nonce (random string) and an ownership attestation component. The
common nonce serves the purpose of both boosting the domain and satisfying
the reduced confidentiality requirement. The ownership attestation component
satisfies the authenticity requirement.

A Data Ownership Certificate C has the form of 〈pk, n, σ〉. Each active
entity E maintains three keys k1, sk, and pk. For each piece of information
d originating from E, E generates a unique n = G(k1||d) where G(·) is a
pseudo-random number generator and || is the concatenation function. Assume
that the output n of G(·) is l bits long and G(·) is cryptographically secure,
then by the birthday paradox, one needs to guess approximately

√
2l numbers

to have one of them collide with n. If l is large enough, say 1024, then guessing
the correct n is hard. This nonce n will be used in matching protocols instead
of the original data d.
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When E submits d to some database A, it generates a signature σ = {d||A}sk

where A is the unique ID of the database. The signature does not contain the
plaintext information d or A, however anyone knowing the public pk and the
plaintext information d and A may verify that A is indeed an authorized owner
of d by verifying the authenticity of σ using pk.

6.2 Certified matching protocols

In this section, we describe the integration of Data Ownership Certificates
with the proposed protocols from Section 5.

We assume that each set element in database A is a pair 〈d,C〉 of data and
a Data Ownership Certificate C = 〈pk, n, σ〉 where σ = {d||A}sk. The owner
of database A now runs a matching protocol with n instead of d as the data.

6.2.1 Certified Trusted Third Party Protocol (CTTPP). We describe
how to use Data Ownership Certificates to extend the Trusted Third Party Pro-
tocol . Let A (resp. B) be the ID of Alice (resp. Bob). The set that Alice (resp.
Bob’s) sends to Trudy contains elements in the form of (na, σa, pkna) (resp.
(nb, σb, pknb

)), i.e., triples of a common nonce, ownership attestation compo-
nent, and the corresponding public key. The nonce na (resp. nb) is associated
with elements a (resp. b).

When Trudy finds a matching between two common nonces na and nb, she
compares the corresponding public keys pkna and pknb

. If they are not the
same, then it means that Alice and/or Bob spoofed the element and forged the
corresponding certificate. Trudy cannot tell which is the case and she simply
returns ⊥ to both of them. If the corresponding public keys are the same, Trudy
runs the verification algorithm on Alice’s and Bob’s ownership attestation com-
ponent VERIFY(pkna , a||A, σa) = v2 and VERIFY(pknb

, b||B, σb) = v2 to
check whether Alice and/or Bob are authorized owners of the matching value.
Trudy will find one of the following three cases to be true:

1 v1 = true and v2 = true

2 v1 = true and v2 �= true or vice versa

3 v1 �= true and v2 �= true

If Trudy encounters case (1), then she concludes Alice and Bob are the
authorized owners of the matching element. She adds the element to the result
set and continues with the matching computation. We show why this is the
case. Suppose only Bob is the authorized owner of the element associated with
nb. It is unlikely that Alice spoofs the common nonce na where na = nb as
discussed in Section 6.1. Suppose Alice obtains na and the associated DOC
for some other database owner, it is highly unlikely that Alice can generate a
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public/private key pair that is the same as the key pair for nb. By symmetry,
it is highly unlikely to be the case that Alice is the authorized owner of the
element associated with na and Bob spoofs nb or the public/private key pair.
If (2) or (3) is the case, it implies Alice and/or Bob spoofed the nonce and
an associated DOC or obtained her/his element from some other authorized
owner(s) and spoofed a DOC. Trudy returns ⊥ for this case.

If Alice (resp. Bob) did not pose a spoofed query and receives ⊥ from
Trudy, then she (resp. he) knows that the other party was not honest.

6.2.2 Certified Hash Protocol (CHP). The integration of data owner-
ship certificates with the Hash Protocol is slightly different from that with the
Trusted Third Party Protocol . We assume that Alice poses a query Qh each
element of which is in the form of 〈h(na), σa〉 where σa = {a||A}ska .

Bob hashes each of his common nonces and checks if it matches one of
h(na). If he discovers a match between h(na) and h(nb), then he assumes that
the two corresponding ownership attestation components were signed by the
same private key and does the following check. Bob first looks up his copy of
the public key pkb for nb and checks if VERIFY(pkb, b||A, σa) returns true.
If it does return true, it means that Alice is an authorized owner of b. Bob
may add b to the result set P and continue with his matching computation.
Otherwise Bob can conclude that Alice is not the authorized owner of b —
she either obtained h(na) and the corresponding certificate from some other
authorized owner of a or she was able to guess h(na) and forged the ownership
attestation component. Bob cannot tell which was the case. Now Bob has
the following two options: (a) returning ⊥ to Alice, or (b) continuing with
the matching computation but omitting b from the final result. Either way the
modified protocol satisfies the security goal of being unspoofable and it enables
parties to detect cheating.

We need to be careful about the usage of hash functions in the Certified Hash
Protocol. Consider the following two scenarios. In the first scenario, assume
that Alice, Bob, and Charlie are authorized owners of some customer John’s
information d. Imagine Alice executes the Certified Hash Protocol with Bob
and Charlie and she receives data from Bob and Charlie. If Bob and Charlie
use the same hash function, e.g. MD5 or SHA1 , then Alice may infer that
all three of them have d after the protocol executions with Bob and Charlie
respectively. Alice hashes her own copy of the nonce nd associated with d
and discovers nb is in the sets that Bob and Charlies sends to her. The second
scenario is that both Bob and Charlie are authorized owners of d but Alice
is not. Furthermore, assume Alice does not have a copy of d and its DOC
from some other authorized owner. In this case, Alice may infer that Bob and
Charlie share some common information although she does not know what it
is.
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We propose using an HMAC in the Hash Protocol to prevent the inference
problem in the second scenario. An HMAC is a keyed hash function that is
proven to be secure as long as the underlying hash function has some reason-
able cryptographic strength [Bellare et al., 1996]. An HMACk(T ) =

h(k ⊕ opad, h(k ⊕ ipad, T ))

is a function which takes as inputs a secret key k and a text T of any length;
“opad” and “ipad” are some predetermined padding. The output is an l-bit
string where l is the output of the underlying hash function h(·).

Using HMAC in the Certified Hash Protocol avoids the problem in the sec-
ond scenario as long as each pair of parties uses a different key every time they
run the Certified Hash Protocol. This prevents adversaries from correlating
elements from different executions of the Hash Protocol.

6.2.3 Certified AgES protocol (CAgES). We need to modify the AgES
protocol in Figure 3.1 in three ways. First, both Alice and Bob hash and en-
crypt the common nonce instead of the actual data. Second, Bob returns pairs
〈σb, feB (h(nb))〉 for each of his encrypted elements feB (h(nb)). Third, when-
ever there is a match, Alice verifies whether Bob is an authorized owner by
checking the corresponding σb.

6.3 Homomorphic DOC (HDOC)

The data ownership certificate as proposed is limited in a way that it intro-
duces linear storage growth if authorized set owners wish to match a subset
of the attribute values of an active entity’s information. This partial match-
ing property is desirable in many situations. For example, customer database
A is an authorized owner of some customers’ name, credit card number, and
mailing address and customer database B is an authorized owner of the same
customers’ name, credit card number and email addresses. Suppose A and B
wish to find out their common costumers by intersecting their respective set of
credit card numbers. This cannot be done efficiently with our proposed DOC
since A’s (resp. B’s) customers need to generate one DOC for their names,
credit card numbers and mailing addresses (resp. email addresses) respec-
tively. When a database has various information about a customer, the storage
overhead can be quite high. In this section, we describe a Homomorphic Data
Ownership Certificate scheme that allows a customer to generate one DOC
for all of his or her information submitted to a database and still enables the
databases to intersect certain attributes of customer information.

The semantics for a homomorphic data ownership certificate call for a mal-
leable DOC scheme. Given a DOC CO

S for S from an active entity E, we
would like the set owner to generate a valid C̄O

S for S′ where S′ ⊂ S without
the help of E.
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Homomorphic signatures have the right property we are looking for. Let
� be a generic binary operator. Intuitively, a homomorphic signature scheme
allows anyone to compute a new signature Sig(x � y) given the signatures
Sig(x) and Sig(y) without the knowledge of the secret key. Johnson et. al
introduced basic definitions of security for homomorphic signature systems
and proposed several schemes that are homomorphic with respect to useful
binary operators [Johnson et al., 2002].

We are interested in the set-homomorphic signature scheme proposed in [John-
son et al., 2002] that supports both union and subset operations. More pre-
cisely, the scheme allows anyone to compute Sig(S1 ∪ S2) and Sig(S′) where
S′ ⊆ S1 if he possesses S1, S2, Sig(S1) and Sig(S2).

We now describe our construction for a Homomorphic Data Ownership Cer-
tificate (HDOC) scheme. We need to modify both the common nonce and the
data ownership component to use the homomorphic signatures. Let S be a set
of strings, E the active entity that originates S, and skS the signing key exclu-
sively used for S. When E submits its information S′ ⊆ S to database A, it
issues A an HDOC HA

S = 〈pkS , SigskS
(S′), SigskS

(S′ ∪ A)〉.
Computing intersection on data with HDOC is straight forward. Suppose

databases A and B wish to compute intersection on their customers’ credit
card number. Then for each customer ci’s HDOC components SigskS

(Sci)
and SigskS

(Sci ∪ A), database A computes Sig(S′
ci

) and Sig(S′
ci
∪ A) where

S′
ci

= {c′is credit card #}. B does similar computations. Now A and B may
run any matching protocol as described in Section 6.2 using the recomputed
HDOC.

7. Security Analysis

Recall that we consider four threat models in our paper: the malicious model
with a large or small domain, and the semi-honest model with a large or small
domain.

We have also identified three goals that a private matching protocol can sat-
isfy: strong/weak, unspoofable/spoofable, and symmetric/asymmetric. In this
section, we analyze the effectiveness of the three private matching protocols
with respect to each of the threat models and determine what security goals
each protocol achieves.

In this section, We analyze the fulfillment of the security goals of the TTPP
, HP , AgES , CTTPP , CHP , and CAgES protocols in the four threat models.
We summarize the results in Figure 3.2(a) through Figure 3.3(b).

7.1 The malicious model with a large domain

We now analyze the fulfillment of the security goals of the TTPP, HP, AgES,
CTTPP, CHP, and CAgES protocols in the malicious model with a large do-
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main. All the unmodified protocols are unspoofable in the absence of collude-
then-spoof attacks. Although a large domain makes it difficult for an adversary
to guess an element in the other party’s set, the adversary can include values
obtained from another database in the query to increase the probability of suc-
cess.

7.1.1 Trusted Third Party Protocol. The Trusted Third Party Protocol
(TTPP) is a spoofable, strong and either symmetric or asymmetric matching
protocol. TTPP is strong because both parties learn only P and nothing else in
a symmetric setting; in an asymmetric setting, one party learns P and the other
party learns nothing. TTPP is always strong for this reason in all four threat
models. TTPP can be either symmetric or asymmetric depending on whether
the sends query results to one or both parties.

Technique Unspoofable Strong Symmetric
Sym X XTTPP
Asym X

HP (*)
AgES X

Sym X X XCTTPP
Asym X X

CHP X(1) (*)
CAgES X(1) X

(a) Malicious model with a large domain

Technique Unspoofable Strong Symmetric
Sym X XTTPP
Asym X

HP
AgES X

Sym X X XCTTPP
Asym X X

CHP X(1) (*)
CAgES X(1) X

(b) Malicious model with a small domain

Figure 3.2. Security goals satisfied by the protocols in the malicious model. (*): Note that
for these examples, we do not have a strong protocol. However, we do have a collusion-free
strong protocol which is strong in the absence of colluding attacks . X(1) denotes a protocol is
unspoofable in the absence of colluding adversaries.
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Technique Unspoofable Strong Symmetric
Sym X X XTTPP
Asym X X

HP X (*)
AgES X X

Sym X X XCTTPP
Asym X X

CHP X (*)
CAgES X X

(a) Semi-honest model with a large domain

Technique Unspoofable Strong Symmetric
Sym X X XTTPP
Asym X X

HP X
AgES X X

Sym X X XCTTPP
Asym X X

CHP X (*)
CAgES X X

(b) Semi-honest model with a small domain

Figure 3.3. Security goals satisfied by the protocols in the semi-honest model. (*): Note that
for these examples, we do not have a strong protocol. However, we do have a collusion-free
strong protocol which is strong in the absence of colluding attacks . X(1) denotes a protocol is
unspoofable in the absence of colluding adversaries.
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7.1.2 Hash Protocol. The Hash Protocol is spoofable, collusion-free
strong, and asymmetric. It is strong in the absence of colluding attacks ; since
the domain is large, it is difficult for the recipient of a hashed set to guess an
element that is actually in the other party’s set. However, it is easier for the
recipient of a hashed set to learn whether an element is in the other party’s set
if the recipient uses values obtained from another database in the matching.
The Hash Protocol is asymmetric since the party that receives the result first
may or may not send the (correct) result to the other party.

7.1.3 AgES protocol. The AgES protocol is spoofable, strong, and
asymmetric. The AgES is strong because no attacker may learn any additional
information besides the query result and the size of the other party’s set. It is
asymmetric since the party that receives the result first may or may not send
the (correct) result to the other party.

7.1.4 Certified matching protocols. CTTPP is unspoofable. If one
of the parties spoofs some element d, the trusted third party can detect it by
checking the ownership attestation component as described in Section 6.2.1.

Both CHP and CAgES are unspoofable in the absence of colluding adver-
saries. The common nonces in a DOC prevent a party from guessing the correct
nonce associated with certain data and thus prevent guess-then-spoof attacks.

When colluding parties exist, CHP and CAgES are spoofable. Assume Al-
ice is an authorized owner of some information d and Charlie is not. Alice
colludes with Charlie and gives data d and the associated DOC to Charlie.
When Bob sends his data set to Charlie in a CHP execution, Charlie can learn
whether Bob has d by hashing the nonce nd associated with d and checking
if it is in Bob’s set. There is a non-negligible probability that nd is in Bob’s
set. This matching result violates the definition for unspoofable. Similarly, in
a CAgES protocol execution, Charlie may encrypt the nonce nd and send it to
Bob. Charlie will discover whether Bob has d when Bob honestly responds to
the query.

On the other hand, if Charlie and Bob switch roles in the CHP and CAgES
protocol executions, Charlie cannot prove to Bob that he has d since he does
not have a valid ownership attestation component for d.

7.2 The malicious model with a small domain

With a small domain, a malicious adversary can guess an element of the
other party’s set with non-negligible probability. An adversary can then launch
a spoofing attack and learn elements of the other party’s set not contained in
its own with non-negligible probability. Therefore, without modification, all
three protocols are spoofable in the malicious model with a small domain.
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7.2.1 Trusted Third Party Protocol. The trusted third party is spoofa-
ble, strong, and either symmetric or asymmetric. The analysis is similar to that
of the malicious model with a large domain presented in Section 7.1.1.

7.2.2 Hash Protocol. The hash protocol is spoofable, weak, and asym-
metric. It is weak because a malicious party may launch a guess-then-spoof
attack and succeed in learning the entire set of the other party with high prob-
ability. The analysis for asymmetry is similar to that of the hash protocol for
the malicous model with a large domain presented in Section 7.1.2.

7.2.3 AgES protocol. The AgES protocol is spoofable, strong, and
asymmetric. The AgES is spoofable because although the encryption scram-
bles the data, it cannot prevent spoofing attacks. The analysis for AgES being
strong is similar to that of the malicious model with a large domain in Sec-
tion 7.1.3. The analysis for asymmetry is similar to that of a large domain
presented in Section 7.1.3.

7.2.4 Certified matching protocols. By combining the DOC with
TTPP, HP, and AgES, we obtain protocols that satisfy the same security prop-
erties in the malicious model with a small domain as the corresponding certi-
fied protocols in the malicious domain with a large domain. In particular, by
adding the DOC component, we enable the protocol to detect spoofed queries
in the absence of colluding attacks .

7.3 The semi-honest model with a large domain

All three protocols are trivially unspoofable in a semi-honest model since
parties do not cheat in a semi-honest model. For the strong/weak dimension,
each protocol satisfies the same security goal as the corresponding protocol in a
malicious model with a large domain in Section 7.1. The TTPP is can be either
symmetric or asymmetric depending on whether the trusted party sends the
result to one or both parties. The HP and AgES can also be either symmetric
or asymmetric depending on whether the protocol prescribes the party which
receives the result first sends it to the other party.

The TTPP is unspoofable, strong, and symmetric/asymmetric. The analysis
of TTPP being strong is similar to that of a large domain presented in Sec-
tion 7.1.1.

The AgES is an unspoofable, strong, and symmetric/asymmetric and proto-
col. The analysis of AgES beging strong is similar to that of a malicious model
with a large domain in Section 7.1.3.

7.3.1 Certified matching protocols. All unmodified protocols are
unspoofable in the semi-honest model. The DOC mechanism is not applica-
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ble in the semi-honest model with a large domain and this becomes clear in
Section 7.4.

7.4 The semi-honest model with a small domain

The analysis for the semi-honest model with a small domain is similar to
that of the semi-honest model with a large domain. The only difference is
that the HP is collusion-free strong in the large domain and weak in the small
domain and by combining the DOC with the HP, we obtain a protocol that is
collusion-free strong in the semi-honest model with a small domain.

Protocol Cost Complexity

TTPP q log q + b log q O(b log b)
HP Ch(q + b) + b log b + q log b O(b log b)
AgES (Ch + 2Ce)(q + b) + 2b log b + 3q log q O(Ceb)
CTTPP q log q + b log q + 2Cxr O(Cxr)
CHP Ch(q + b) + b log b + q log b + Cxr O(Cxr)

(a) Computational cost

Protocol Cost Complexity

Asymmetric TTPP (q + b + r) · n O(bn)
Symmetric TTPP (q + b + 2r) · n O(bn)
HP b · l O(bl)
AgES (2q + b) · m O(bm)
Asymmetric CTTPP (q + b + r) · n + (q + b) · k O(bn)
Symmetric CTTPP (q + b + r) · n + (q + b) · k O(bn)
CHP (l + k) · b O(bk)

(b) Communication cost

Figure 3.4. Cost analysis



Private Matching 47

8. Cost Analysis

In this section, we use the following notations. Alice poses a query Q to Bob
who has a set B. Let P = Q ∩ B be the query result. Let q = |Q|, b = |B|,
and p = |P |. Let Ch be the cost of hashing and Cx be the cost of running
the public key verification algorithm VERIFY(·, ·, ·). Let j be the length of a
public key, k be the length of the ownership attestation component, l be the
length of the output of h(·), m be the length of each encrypted code word in
the range of F , and n be the length of each element; all quantities are in bits.
We assume that the set Q is larger than the set B, i.e. b < q, and we assume
that l ≤ k + j ≤ n.

We present the computational and communication cost in Figure 3.4(a) and
Figure 3.4(b) respectively.

The computational costs of the trusted third party and hashing protocols are
dominated by the cost of sorting the list. For the AgES and certified protocols,
the computation cost is dominated by the encryption/decryption and public key
signature verification respectively. Further details can be found in Figure 3.

As we may see from Figure 3.4(b), the communication cost for any proposed
protocol is linear in the size of the sets being sent. This linear communication
cost is the lower bound of any set intersection protocols which compute exact
matching [Kalyanasundaram and Schnitger, 1992].

9. Related Work

Private Information Retrieval (PIR) schemes allow a user to retrieve the i-th
bit of an n-bit database without revealing i to the database [Beimel and Ishai,
2001, Cachin et al., 1999, Chor et al., 1995]. These schemes guarantee user
privacy. Gertner et al. introduce Symmetrically-Private Information Retrieval
(SPIR) where the privacy of the data, as well as the privacy of the user is
guaranteed [Gertner et al., 1998]. In every invocation of a SPIR protocol, the
user learns only a single bit of the n-bit database, and no other information
about the data. Practical solutions are difficult to find since the PIR literature
typically aims for very strong information-theoretic security bounds.

There has been recent work on searching encrypted data [Boneh and Franklin,
2004, Waters et al., 2004] inspired by Song, Wagner, and Perrig’s original pa-
per describing practical techniques for searching encrypted data [Song et al.,
2000]. Song et al. proposed a cryptographic scheme to allow a party C to en-
crypt and store data on an untrusted remote server R. R can execute encrypted
queries issued by C and return encrypted results to C.
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10. Future Work

This paper explores some issues associated with private matching. But many
areas remain to be explored. Here, we list a few particularly interesting chal-
lenges:

In this paper, we examined two party protocols. What are the issues that
arise with more complicated protocols with more than two parties?

There is a basic asymmetry that arises between two parties where one
party knows significantly more than a second party. Parties that control
large sets may be able to extract significantly more interesting informa-
tion than parties that control small sets. There may be instances where
parties controling small sets can detect and reject these queries.

Here, we only consider examples of matching elements from two sets.
More interesting and more far-ranging examples are possible. For in-
stance, this paper considered listing queries — we actually listed all the
elements held in common between two sets. We can consider a broader
range of functional queries which return a function calculated over the
intersection of two sets. While a broad literature in statistical databases
exists, the question of functional operations is a more general notion that
deserves further attention.

There is an interesting connection between our spoofing discussion and
the database literature on updates through views. The view update liter-
ature provides (constrained) solutions for the following: given a query
on relation instances R and S resulting in a set P , what changes to R
and S could produce some new answer P ′? The reasoning used to ad-
dress that problem is not unlike the reasoning used to learn information
via spoofing: by substituting R′ for R and observing the query result P ′,
what can be learned about S? The literature on updates through views
is constrained because it seeks scenarios where there is a unique modi-
fication to R, S that can produce P ′. By contrast, much can be learned
in adversarial privacy attacks by inferring a non-unique set of possible
values for S.

In large distributed systems, it may be desirable to have a set of peer
systems store information in a variety of locations. In this broader dis-
tributed system, can we still guarantee privacy properties.

In our list of attacks in Section 3.1, we discussed a hiding attack where a
database owner pretends certain values don’t occur in its database. Can
we provide effective defenses against hiding attacks?
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Notes
1. In the introduction, we argued that semi-honest protocols were unrealistic in many situations. How-

ever, for completeness we will consider them here.
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