COMPUTER SECURITY IN THE 21ST CENTURY

COMPUTER SECURITY IN THE 21ST CENTURY

Edited by D. T. LEE Academia Sinica, Taiwan

S. P. SHIEH National Chiao Tung University, Taiwan

J. D. TYGAR UC Berkeley

Springer

Contents

List of I	Figures	ix
1		
Introduc	ction	1
D. T. Le	e, S. P. Shieh and J. D. Tygar	
1.	Acknowledgments	2
Part I	Security Protocol Design	
2		
-	ges in Protocol Design and Analysis	7
	Gen	
1.	Introduction	7
2.	Purpose of Analysis	8
3.	The Environment	9
4.	Case Studies	12
5.	Conclusions and Challenges	21
Refe	erences	22
3		
Private 1	Matching	25
Yaping I	Li, J. D. Tygar and Joseph M. Hellerstein	
1.	Introduction	25
2.	Problem Statement	29
3.	Threat Models	31
4.	Terminology and Assumptions	33
5.	Techniques	35
6.	Data Ownership Certificate (DOC)	35
7.	Security Analysis	41
8.	Cost Analysis	47
9.	Related Work	47
10.	Future Work	48
Refe	erences	49
4		- 1
	ication Protocol Analysis	51
	n Millen	
1.	Introduction	51

COMPUTER SECURITY IN THE 21 CENTURY

2.	Modeling Computational Operations	52
3.	Diffie-Hellman and Group Protocols	55
4.	Deeper Models of Encryption	56
5.	Decidable Formal Methods	56
6.	Future Directions	58
Refe	erences	58
5		
Self-cer	tified Approach for Authenticated Key Agreement	61
Tzong-O	Chen Wu and Yen-Ching Lin	
1.	Introduction	61
2.	Proposed 2-PAKA Protocol	63
3.	Proposed <i>n</i> -PAKA Protocol	64
4.	Security Analysis	65
5.	Conclusion	66
Refe	erences	66

Part II P2P and Ad Hoc Networks

6		
Experime	nting with Admission Control in P2P Networks	71
Nitesh Sa.	xena, Gene Tsudik and Jeong Hyun Yi	
1.	Introduction	72
2.	Background	73
3.	Bouncer: Admission Control Toolkit	75
4.	Integration with Peer Group Systems	79
5.	Experiments	83
6.	Discussion	86
7.	Future Directions	87
Refere	ences	88
7		
Adaptive	Random Key Distribution Schemes for Wireless Sensor Networks	91
Shih-I Hu	ang, Shiuhpyng Shieh and S.Y. Wu	
1.	Introduction	92
2.	Adaptive Random Pre-distribution Scheme	94
3.	Uniquely Assigned One-Way Hash Function Scheme	96
4.	Evaluation	97
5.	Conclusion	102
Refere	ences	102

Part III Intrusion Detection, Defense, Measurement

8		
Measur	ing Relative Attack Surfaces	109
Michae	Howard, Jon Pincus and Jeannette M. Wing	
1.	Introduction	110
2.	Terminology and Model	113

vi

Content	S	vii
3.	Dimensions of an Attack Surface	117
4.	Security Bulletins	121
5.	Analyzing Attack Surfaces	125
6.	An Example Attack Surface Metric	126
7.	Discussion of the RASQ Approach	133
8.	Related Work	134
9.	Future Work	134
Refe	prences	136
9		
	ling of Intrusion Detection Systems with Identification Capability	139
Pei-Te C	Chen, Benjamin Tseng and Chi-Sung Laih	
1.	Introduction	139
2.	Traditional IDS model	141
3.	A New model based on Identification (IDSIC)	142
4.	Conclusion	144
Refe	erences	144
10		1.47
	e-End Defense System against DDoS Attacks	147
	Lee, Shiuhpyng Shieh, Jui-Ting Shieh and Sheng-Hsuan Wang	
1.	Introduction	148
2.	Review of D-WARD	151
3.	Proposed System	153
4.	Performance Evaluation	161
5.	Conclusion and Future Work	166
Refe	erences	167
11 DEACL	E. T. Line Graden E. Three for Dame dation Granity Early	169
	E: Tracking System Failures for Reproducing Security Faults Hsien Tsai, Shih-Hung Liu, Shuen-Wen Huang, Shih-Kun Huang a	
Liang		
1.	Introduction	170
2.	The Detection of Control State Corruption	171
3.	The BEAGLE System Design and Implementation	174
4.	Experiments and Assessment	175
5.	Related Work	176
6.	Conclusions	178
Refe	prences	179
Part IV	Multimedia Security	
12		
Web Ap	plication Security—Past, Present, and Future	183
-	1 Huang and D. T. Lee	
1.	Introduction	184
2.	Common Web Application Vulnerabilities	185
3	Current Countermeasures	187

3.Current Countermeasures1874.Concluding Remarks and Future Work214

COMPUTER SECURITY IN THE 21 CENTURY

Refer	ences	218
13		
Securing	JPEG2000 Code-Streams	229
Robert H.	Deng, Yongdong Wu and Di Ma	
1.	Introduction	230
2.	Overview of JPEG2000 Code-streams	232
3.	Overview of The Schemes	238
4.	The Authentication Scheme	240
5.	The Access Control Schemes	245
6.	Conclusion	250
Refer	ences	251
14		
A Secret	Information Hiding Scheme Based on Switching Tree Coding	255
	n Chang, Tzu-Chuen Lu and Yi-Long Liu	
1.	Introduction	255
2.	Related Work	256
3.	Experiments	260
4.	Conclusions	262
Refer	ences	262

Index

viii

265

List of Figures

2.1	Binding updates in Mobile IPv6	16
2.2	The Canvas protocol	18
2.3	An "attack" on the Canvas protocol; dotted lines indicate	
	unused links.	19
3.1	AgES protocol	34
3.2	Security goals satisfied by the protocols in the malicious model. (*): Note that for these examples, we do not have a strong protocol. However, we do have a collusion-free strong protocol which is strong in the absence of colluding attacks . $X^{(1)}$ denotes a protocol is unspoofable in the absence of colluding adversaries.	42
3.3	Security goals satisfied by the protocols in the semi- honest model. (*): Note that for these examples, we do not have a strong protocol. However, we do have a collusion-free strong protocol which is strong in the ab- sence of colluding attacks . $X^{(1)}$ denotes a protocol is unspoofable in the absence of colluding adversaries.	43
3.4	Cost analysis	46
6.1	Admission Control	74
6.2	GAC System Architecture	75
6.3	Dynamic Threshold Update Procedure	77
6.4	Binding GMC to PKC	78
6.5	GAC Packet Structure	78
6.6	Secure Gnutella Protocol Flow	80
6.7	Spread GAC Message Encapsulation	83
6.8	Basic Operation Cost	84
6.9	Signature Size	85
6.10	Gnutella Experiments	85
6.11	Secure Spread Experiments	86

7.1	Unordered key pool and the Two-Dimension key pool	
	with $t = 10, s = 10$.	95
7.2	A key selection example	96
7.3	Comparison of different configured Two-Dimension Key	
	Pool Selecting Schemes and Eschenauer's scheme (key pool size is 100,000)	99
7.4	Comparison of Random-pairwise keys scheme and UAO	99
7.4	scheme in memory requirement and maximum supported	
	network size.	102
8.1	Relative Attack Surface Quotient of Different Versions	102
0.11	of Windows [Howard, 2003]	111
8.2	Microsoft Security Bulletin MS02-005a: Cumulative Patch	
	for Internet Explorer (I)	122
8.3	Microsoft Security Bulletin MS02-005a: Cumulative Patch	
	for Internet Explorer (II)	123
8.4	Mapping RASQ Attack Vectors into Our Formalism	129
8.5	Howard's Relative Attack Surface Quotient Metric	131
9.1	The roles and relationships in TIDSs.	141
9.2	The roles and components in IDSIC.	143
10.1	An example of the deployment of D-WARD	152
10.2	Average O/I values	154
10.3	Classification of Traffic Flow	157
10.4	Constant SYNC attack.	162
10.5	Pulsing SYNC attack.	162
10.6	Increasing SYNC attack.	163
10.7	Gradual SYNC attack.	163
10.8	Constant bandwidth overloading attack.	164
10.9	Pulsing bandwidth overloading attack.	165
	Increasing bandwidth overloading attack.	165
	Gradual bandwidth overloading attack.	166
11.1	A program with buffer overflow.	171
11.2	Process of the function wrapper generation	173
11.3	The architecture of Beagle	174
11.4	Calibration of the notepad.exe stack trace	176
11.5	The stack backtrace of the RobotFTP Server 1.0 with	
	overlong input	176
12.1	Example of an XSS vulnerability.	185
12.2	Compromised HTML output.	186
12.3	Example of a SQL injection vulnerability.	186
12.4	Example of a general script injection vulnerability.	187

st of Fig	ures	Х
12.5	A more severe script injection bug.	18
12.6	Web application vulnerabilities result from insecure in-	
	formation flow, as illustrated using XSS.	19
12.7	An example of our test pattern for XSS.	19
12.8	System architecture of WAVES.	19
12.9	A comparison among static verification tools.	20
12.10	Primitive lattice.	20
12.11	Type-aware lattice.	20
12.12	Example A.	20
12.13	Example B.	20
12.14	Example of a false positive resulting from a type cast.	20
12.15	WebSSARI system architecture.	21
13.1	$n_R = 3$ resolutions of an image.	23
13.2	Two images of different qualities.	23
13.3	Partitioning resolutions into precincts.	23
13.4	Packet generation process.	23
13.5	Structure of a JPEG2000 code-stream.	23
13.6	Arrangement of packets in a code-stream following pro-	
	gression order layer-resolution-component-precinct.	23
13.7	A third party publication model.	23
13.8	The access control system setup.	23
13.9	An example Merkle hash tree.	24
13.10	The Merkle tree for a code-stream.	24
13.11	Merkle tree for an example code-stream.	24
13.12	The optimized Merkle tree.	24
13.13	An example optimized Merkle tree.	24
13.14	An example Sandhu tree.	24
	Rooted tree for key generation for access control.	24
13.16	An example rooted tree for a code-stream with $n_R = 3$,	
	$n_L = 3$, and $n_P = 2$.	25
	Three binary connection trees.	25
14.2	The search order of STC.	25
14.3	The experimental images.	26

Chapter 1

INTRODUCTION

D. T. Lee Academia Sinica, Taiwan

S. P. Shieh National Chiao Tung University, Taiwan

J. D. Tygar UC Berkeley

Computer security has moved to the forefront of public concern in the new millennium. Hardly a day passes where newspaper headlines do not scream out worries about "phishing", "identity theft", "browser exploits", "computer worms", "computer viruses", "online privacy", and related concerns. The major vendor of computer operating systems has announced that computer security is now its top priority. Governments around the world, including most major governments in North America, Europe, and East Asia continue to worry about "cyber-terrorism" and "cyber-war" as active concerns.

It was in this charged environment that we decided to hold a workshop in December 2003 on emerging technologies for computer security. The workshop was held in Taipei in conjunction with several other conferences (notably Asiacrypt) and featured leading researchers from the Asia-Pacific region and the United States. What followed was three days of exchange of ideas that led to a number of significant developments. This book attempts to share some of the research trends that were reflected in the best papers published at the conference.

The first section deals with the classical issue of cryptographic protocols. How can we build secure systems that need to exchange private data, while guarding against eavesdroppers who listen in on attacks? Dieter Gollmann examines five case studies that show challenges in cryptographic protocol design and argues for a new framework for viewing the problem. Yaping Li, J. D. Tygar, and Joseph Hellerstein show how private matching can be used to exchange database information while still protecting the privacy of individuals. Jonathan Millen brings formal analysis to bear, showing that current techniques of analyzing protocols still fail to protect against a number of problems. And Tzong-Chen Wu and Yen-Ching Lin argue for a a new key agreement method based on self-certification.

We next turn our attention to networking, and examine the rapidly expanding fields of peer-to-peer networking and ad hoc networking. These clearly introduce a number of new security challenges, and are especially relevant in light of recent studies suggesting the peer-to-peer networking now comprises the majority of networking over the Internet. Nitesh Saxena, Gene Tsudik, and Jeong Hyung Yi present a new system, Bouncer , that provides arguably the most fundamental element of peer-to-peer security: secure admissions control. They also discuss its actual implementation in several real peer-to-peer networks. And Shih-I Huang, Shiuhpyng Shieh, and S. Y. Wu present key distribution systems for an important emerging type of ad hoc network : wireless sensor networks .

A fundamental change in thinking about security has been the change of emphasis from building impenetrable systems to building systems that rapidly respond when attacks commence. Michael Howard, Jon Pincus, and Jeannette M. Wing report on work at Microsoft that proposes a completely new way of thinking about the vulnerability of systems: "relative attack surfaces". Pei-Te Chen, Benjamin Tseng, and Chi-Sung Laih give a new may of modeling intrusion detection systems . Fu-Yuan Lee, Shiuhpyng Shieh, Jui-Ting Shieh, and Sheng-Hsuan Wang propose a new type of system for actively responding to distributed denial of service attacks; and Chang-Hsien Tsai, Shih-Hung Liu, Shuen-Wen Huang, Shih-Kun Huang, and Deron Liang discuss their BEAGLE system that allows security faults to be reproduced for debugging purposes.

Finally we turn our attention to perhaps the hottest single topic in the set of emerging security concerns: protecting multimedia content. Yao-Wen Huang and D. T. Lee discuss issues in Web Application Security. Robert H. Deng, Yongdong Wu, and Di Ma discuss their work in securing a new standard for photographic images, JPEG2000 . And Chin-Chen Chang, Tzu-Chuen Lu, and Yi-Long Liu discuss a new method of "watermarking" information in documents: a secret information hiding scheme.

Together, these works present an agenda of important security topics for computer security in the new century.

1. Acknowledgments

Support for this book came from Academia Sinica, National Chiao Tung University, and the University of California, Berkeley. D. T. Lee received ad-

Introduction

ditional support from National Science Council, and Science and Technology Advisory Group of Executive Yuan, Taiwan. Shiuhpyng Shieh received additional support from National Science Council, Ministry of Education, Taiwan. and Industrial Technology Research Institute. J. D. Tygar received additional support from the US National Science Foundation and the US Postal Service. The opinions in this book are those of the authors and do not necessarily reflect the opinions of the funding sponsors or any government organization.