
Efficient Netlist Comparison Using Hierarchy and Randomization

J. D. !Cygar’ Ron Ellickson*

‘Aiken Computation Lab., Harvard U., Cambridge, MA 02138.
*Valid Logic Systems, 2820 Orchard Pkwy., San Jose, CA 95134.

Abstract

Programs to compare the layout of ICs with their
schematics have recently appeared. These programs
have liited functionality and require large amounts of
CPU time. We discuss the implementation of a fast
[O(n(logn)*)] logic comparison algorithm which uses hi-
erarchy and randomization. This algorithm handles
swappable components without perfomance degradation
and is extremely robust in the presence of input errors.
We include experimental data.

1 Introdulction

Netlist comparison determines whether two circuits are
identical, and identifies the differences if they are not. It
is most commonly used for comparing netlists extracted
from schematics with the netlists extracted from the cor-
responding IC layouts.

Historically, comparison of layouts and logic was done
manually. Large plots were traced with colored pen-
cils and laboriously compared with the schematics. This
method was tedious and error-prone. Several years ago
programs were developed that could extract a netlist from
an IC layout, eliminating one source of error (Alczan-
&r/78/). Later, programs appeared that could compare
the netlist extracted from the layout with a manually en-
tered netlist. This reduced the possibility of comparison
errors but depended on the quality of the human transla-
tion from schematic to net&t. Now designers can graphi-
cally enter schematics into workstations where the netlist
will be automatically generated. At last the netlists from
the layout and the schematic are available for comparison
in machine readable form (Schefjer-Apte[78/, Bark&j).

As logic designs and IC layouta become larger, the com-
parison task becomes more difficult since comparison is
CPU intensive and the netlist data requires increasing
amounts of memory. Even when comparison is compu-
tationally feasible,, conventional representations of netliit
data make it diffi~cult to isolate even very simple errors
such as a power-ground short on large circuits since the
short can occur in any subcircuit using power and ground

nodes. Even worse, the presence of .a single error can
cause many spurious errors to be generated, propagating
warning messages far out of proportion to the original er-
ror; much as a programming language compiler with bad
error correction may report numerous, warnings caused
by a single error. The analogy is misleading because the
situation with IC comparisons is much worse than with
program compilations. Regardless of Ehe verbosity of a
compiler’s error output, one can usually find the first er-
ror in a faulty program and fix it. Since there is no natural
ordering of the netlists derived from a two-dimensional IC
representation, there is no easy way to determine the true
mistake from the error report.

With these faults of previous netliet comparators in
mind, we set out to develop a new logic comparison pro-
gram which attacked these problems on three fronts:

.

.

l

2

Hierarchy. We allow the comparison to be done inde-
pendently on any level of the hierarchy. This tremen-
dously decreases execution time and isolates errors to
a eingle subcircuit.

Randomization. At each level of hierarchy, the
netlists are compared by a new randomized algorithm
that requires time O(n(Iogn)*) time (where n is the
size of the netlist). In a typical design this gives
two orders of magnitude savings over other compari-
son algorithms done on flat artwork. This algorithm
works well whether the designer p.artially labels his
nets or doesn’t 1abeI any nets at ah.

Enhanced Output Facilities. If the circuits don’t
match we display the unmatched nets graphically;
if the circuits do match we provide cross-referencing
of additional information, such as parasitic capaci-
tance, between the layout and the schematic.

Hierarchy

Our algorithm operates on two netlists. The netlists can
be hierarchical or non-hierarchical. However hierarchy
provides several advantages for netlist comparison.

Hierarchy allows users to compare parts of the design
without having the schematic and layout completed for

Paper 42.3
702

22nd Design Automation Conference

0738-100X/85/0702$0 1.00 0 I985 IEEE

Proceedings of the 22nd ACM/IEEE Design Automation Conference, Las Vegas, NV, July 1985, pp. 702-708

r----- --.-- ----------------,

I I
1 I
1 I

’ ~&~,~“,WE= I

I - I G-NAME=OUT)
I I
;
I
I

$IGFNF$lE=E! =
I I
I I
L-------------------------,

Figure 1: Swapping Terminal8

the entire design. For example, two higher order cells
can be compared without the lower order cells being fdy
specified. This is extremely useful for top-down chip com-
position; users can check the layout against the schematic
step-by-step 84 they design the chip.

Hierarchy also helps to localize error detection and re-
porting to the cell being compared.

If a strict hierarchy with no overlap of included cells is
used then additional benefit8 can be gained (ScAefier[8Q).
Strict hierarchical circuit descriptions not only promote
good style, they also substantially simplify the task of
net&it comparison. If each level of hierarchy contains in-
formation about no more than k subcircuits and net8 and
F(n) represents the expected required time to compare
two flat descriptions containing n subcircuits and nets,
hierarchy reduces the time for comparison to F(k) logk n.

Hierarchical input presents a number of complications
for the implementor. Because designers tend to construct
subcircuits with inherent symmetries, sets of terminals at-
tached to the subcircuit may be interchangeable. Instead
of hard-coding specific interchangability (such as swap-
ping DRAIN and SOURCE in a MOSFET) we generalized
the algorithm to allow two different types of swapping.

Swapping Terminals
We alIow the designer to indicate that terminals are swap-
pable by attaching swap properties to them. For ex-
ample, in figure 1, terminals A and B can be swapped.
This implementation allow8 any number of terminal8 to
be swapped. An example of a NAND gate with three
swappable terminals can be seen in figure 2.

Swapping Sets of Terminals

Entire sets of terminals may also be electrically equiv-
alent and therefore interchangeable with other sets. In
figure 3 the set of terminals < A, 8, C > can be inter-
changed with < D, f, P >. This style of swapping is
indicated by a property that ia attached to the subcir-
cuit. Furthermore, our implementation allows swappable
information to be specified globally (for example, letting

I
I
I
I
I
I
I
I
I
I
I
I
L

r
I
I
I
I
I
I
I
I
I
I
I
I
L

-.

Figure 2: Swapping Three Terminals

------------------------,
SWP=(R, 0, C) (0. E:. F>

I
I
I

SiGNFIFE=Q SIG-NF%E=C
SIG-NAME=B

SIG-NRML=D I

SIG-NWlE=E
I
I

Figure 3: Swapping Sections

DRAIN and SOURCE swap on every MOSFET) or to be in-
dependently specified for each subcircuit. We have found
that it b absoluteiy necessary for the compare program
to allow swapping (without degradation of performance)
if it is to be a viable tool.

3 Randomization and Comparison
Each netlist e ha8 an equivalent unique bipartite graph
G(L) defined by this procedure: Create a node in G(e) for
each cell or net in L If a cell is connected to a net by a
terminal in e, connect the corresponding nodes in G(e) by
an edge. If nets, cells, or terminals are named in e, label
the corresponding nodes or edges in G(e) with the same
name. (We denote the edges of G(e) as E(G(e)) and the
nodes of C(e) a8 N(G(e)).)

We say that two netlists er and 42 motcb (el - ex) when
there is an isomorphism between the graphs G(f$) and
G(Lr). If all the nets and cells in two netlists !Jr and & are
uniquely named, we can rapidly check whether Ll N f.8.
The unique names specify one-to-one functions; f&gea :
W(h)) -) WW) ad fnode. : W-W,)) - N(GP?z)).
The netlists match exactly when f is an isomorphism. If
the & + 4, the error may be easily isolated by finding
which edges and nodes have to be added to G(!r) and
C(Lr) to make the graphs isomorphic.

Unfortunately, in real design8 most nets are unnamed
and several distinct instances of a cell may share the

Paper 42.3
703

same name since cells are typically named by their type.
A netlist comparator must therefore construct the iso-
morphism function. Of course, the isomorphism function
must stil1 respect the labelling of the graphs - two la-
belled items can be correlated only if they have the same
label. This ia called the Partially Labelled Graph Isomor-
phism Problem.

If the !r + Q, a good netlist comparator will construct
a relation that is EI “near-isomorphism”, i.e., a relation be-
tween E(G(&)) and E(G(&)) and also between N(G(L1))
and N(G(Q)) that which to the greatest extent posaibIe
maps items in G(r!r) into items in G(fs) that are izomor-
phic within some local subgraph. (We will make this
notion more precilee later in this paper.) As users, we
measure of the qnality of the error reporting of netliat
comparators by the degree to which its relation correctly
predicts what we, the users, intended to do. A more con-
crete measurement is given by the number of error mea-
sages the comparator produces on a given input; the fewer
messages, the better the “near-&morphism” relation.

It has been shown that if an algorithm P exists which
solves the Partially Labelled Graph lsomorphism Problem in
time T(n), there exists au algorithm I which solves the
Graph lsomorphism Problem (which is to check whether
two graphs are isomorphic) in time (T(n))k for a fixed k >
0. Since the Graph lsomorphism Problem is widely believed
to be intractable,1 it would seem that development of
an efficient al’gorithm for netliet comparison is infeasible
(Hoflman[82), Rca8d-Corncil[77j).

Despite these negative theoretical results, we can de-
velop a fast isomorphiem algorithm because circuits de-
signed to be implernented in PC boards or IC’e don’t dis-
play the same generality that graphs do. We can exploit
this fact by using randomized techniques.

Randomization is a relatively recent innovation in algo-
rithms, which frequently makes problems which can not
be efficiently solvecd using deterministic methods easily
approachable (Rabin[76j). Given two netlists that satisfy
our specifications, our randomized algorithm will never
claim that Lr and Lr: match when they don’t; more impor-
tant, the algorithm is guaranteed to find a match (if it ex-
ists) between netli&s Lr and Ls in O(n(log ra)2) time with
an arbitrarily high probability. For example, we could
make the probability that the algorithm fails smaller than
the probability that a meteor will suddenly fall from outer
space and destroy the computer the algorithm is running
Oll. -

lPolynomial time eolntionr to the Graph lsomorphism Problem have
been found for grapha of bounded valence (Luk+O~; however the
exponent in the execution time of these algorithms grow* very
quickly with respect to the valence. Since we will be conridering
hierarchical circuita which may have celL with many connected
terminals and n&e which will have an unbounded number of con-
nected terminals, thaw algorithms won’t help ua.

Restrictions on Netlists

We tailored the restrictions on our netlists to model the
way that people actually design logic. The restrictions
listed will not interfere with real practice. Let g be a
netlist, n =I G(t) 1.

Restriction 1: There is an upper bound Teen on the
number of terminals connected to any cell in e. (Physical
characteristics prevent cells with unbonnded number of
terminals.)

Restriction 2: There is an upper bound Tnet on the
number of terminals connected to almost any net in e; at
most a fixed number B of nets exceed the Tner bound.
(Stylistic considerations prevent this condition from be-
ing violated. If it is accidently violated:, it can be easily
discovered by error detection facilities.)

Let G be an arbitrary graph; no E N(G). The i-
environment of no (A(nc,i)) is the subgraph S C G in-
duced by nc and all the nodes in N(G) connected to no
by some path of at most i edges in G.

Recall that the graph G is said to have a non-trivial
automorphism if there is an isomorphism function f :
N(G) + N(G). The unjized nodes of G (UNFIXED(G)) is
the set

{z) z E N(G), f(z) # z for some automorphism f}
Intuitively, the unfixed nodes are those nodes that can be
switched by some automorphism.

Restriction 3: Partition UNFIXED(G(~Z)) into con-
nected sets (Sr, Ss,. . .). There are at most v = O(logn)
automorphisms on each Si. (If this condition wasn’t
statisfied, SJ would induce a complete graph (or a near-
complete graph) of unbounded size. This is not a config-
uration which arises in real circuits.)

Restriction 4: zf mo,no E N(G(f3), mo,no G
UNFIXED(G then there is some u =: O(logn) such
that A(tr~,u) 9 A(no, u). (Informally, this says that if
two nodes cannot be interchanged, we can discover this
fact by looking at the circuit within O(logn) edges of
the two elements. Circuits failing this condition do occur
sometimes; they are those circuits which have a repeated
design normally handled by hierarchy. If for some resson
they occur in a single (flat) level of hierarchy, the circuit
can be matched in linear time by using th,e ripper method
discussed below. For example, see figure 4. The nets at
Y and Y-l cannot be distinguished in fewer than Y - 1
elements. The zipper method distinguishes the two nets
in linear time, however.)

Random Hashing
Our algorithm works by repeatedly hashing nodes in G(1).
Unfortunately, we have no way of knowing what the prob-
ability distribution of L is. Therefore if was tried to fix a
specific hazh function h, we would have to assume worst-
case behavior which might involve many collisions.

By choosing our hash function h from a set H =
{hhz,. . .I we can get guaranteed good behavior with

Paper 42.3
IQ4

I I
I I
5-------------------------~

Figure 4: A Circuit Failing Restriction 4.

very high probability. What must the structure of the
set H be? Carter- Wegman[76] answered that question
by introducing the following definition and lemma:

Definition: Let H be a set of functions mapping set
A into set B. H ia universal1 if for every I E A, y E B

Lemma: Led A and B be sets. A universala set E
exists composed of hssh functions from A to B. If z E A
and S c A and h E H ia randomly chosen, then

Pr(h(z) E h(S)) 5 &

where Pr indicates expected probability.
We immediately have the following theorem:
Theorem: Given a L satisfying our restrictions and

6xed i,e > 0, there is a universal2 Hi which constista of
functions mapping A(no, i) -+ [l, 2,. . . ,2c] (where no E
N(W))-

Proof: We proceed by induction. A(m,O) is al-
ways the graph consisting of a single node which is distin-
guished only by name. According to the lemma, there is
a universal2 function mapping the name into (1,2,. . . , !Y].
This is HO.

Suppose i 2 1, and we have constructed Hi-l. Using
the unique numbering on the edges connected to no im-
plied the the unique numbering on the terminals of cells,
consider the ordered pair

of neighboring nodes of no. By restrictions 1 and 2
these are all the neighbors of no except in B cases. (We
write T = max(T,,u, T,,.t) .) For those abnormal cases, use
heuristics or guessing to uniquely identify the nodes and
assign no a random chosen integer rd E [l, . . . ,2’] where
1 5 i 5 B and i indexee the abnormal node. Otherwise,
let h E Hi-1 be randomly chosen, and compute

< h(m), h(m), h(m), . . - ,h(mr) > -

Consider the universal2 function X which maps T-tuples
of values to [1..2’]. X exists by the lemma; and the corn-
bin&ion of X and Hi-1 is a universal2 map. Parameterize
Hi by X X Hi-l. 0

Note that if h E Hi then h can be calculated in O(n;)
operations.*

Note further that if we were concerned with swappable
pins, the above proof would have to be modified. If for
example, terminala 1 and 2 were awappable for the cell
corresponding to no, then instead of computing

< h(ml), h(m& h(ms), . . . , h(mT) >

we could compute

< h(ml) @ h(m), h(ms), . . . , h(v) >

where Q is, for example, addition modulo 2c. (The discus-
sion in Rcif-Tygar[t?d] is helpful for understanding this.)

The Algorithm

Here is algorithm for determining whether netlists &,&
satisfying our restrictions match, and if they do, finding
the isomorphism function f between G(&) and G(L,):

1.

2.

3.

4.

5.

6.

Using restrictions 3 and 4 fix u = O(logn) and
v = O(logn). (Tie: 0).

Compute G(d) and G(&). (Time: O(n)).

Randomly pick h E H,,. Calculate h on N(G(L1))
and N(G(&)). This randomly hashes all the nodes
in the graphs according their u-environments. By
the theorem and restriction 4 all the nodes in the
graph that are not unfixed have been assigned to
unique values with probability (1 - 2-c)n. If z E
N(G(fl)), y E N(G(&)), let f(z) = f(y) if h(z) =
h(y). (Time: O(nIogn)).

With high probability, only unfixed nodes have not
been matched uniquely. Partition the unfixed nodes
into connected sets. (Time: O(n)).

By restriction 4, an isomorphism cau be established
between two specific nodes x E N(G(Q) and y E
N(G&)) if h(z) = h(y). However, establishing a
correlation between z and y may fix an isomorphizm
for elements in the connected sets that z and y lie
in. Simultaneously fix an isomorphism for one pair
of values in each of the connected sets, and assign a
random value in [l,. . . , 2O] ss the hash value for that
pair. Repeat steps 3 and 4. By restriction 3 we
will onIy have to repeat steps 3 and 4 O(Iog n) times
at most. (Time: O(n(log ra)‘)).

Verify that f is an isomorphism function by walking
thrqgh the graphs. (Time: O(n)).

‘h can be quickly calculated in parallel. The theorem has several
number-theoretic applications. A discussion of there issues will
appear in a later paper.

Paper 42.3
705

Note that in the worst case the above procedure will
take O(n(log n)*:) time. This procedure can fail ouly when
the random hash function gives the same hash value to
two nodes which can’t be correlated in the given isomor-
phism function; when we execute step 3 we might mis-
assign the isomorphism. This can ody happen when en
unlucky stream of random numbers are generated; there
is no “fatal circuit’ which causes the algorithm to run
beyond its time bounds consistently. The probability of
this procedure succeeding is (1 - P)“” 1 (I - nu2-=) =
1 - O(n log n)/2e which can be made close to 1 by choos-
ing large values of E. (In practice, of course, we handle the
exceptional case by iterating until we make no progress,
since it ia much better to have the program exceed the
time bounds than to give an incorrect answer.)

Zipper Method

Actual use of the algorithm revealed that it ran more
quickly than the analysis above would suggest. Users
tend to label subcircuits and nets liberally, avoid excek
sive automorphiern, and use hierarchy effectively. Engi-
neers seem to feel that circuits designed in theee ways are
easier to design, change, and understand.

These observations led us to a modification of the above
algorithm. Thii modification also adds error-detection fa-
cilities. We dynamically maintain structtuee containing
all the unmatched nodes. As we iteratively find corre-
sponding nodes by the above algorithm, we remove the
nodes from the list. When we Iind two matching nodes,
we can speed the calculation of isomorphic points by ex-
ploiting structural properties. For example, if two cells
are matched by the isornarphii function and the cells
aren’t connected to any swappable terminals, we can im-
mediately match the neta corresponding to the given ter-
minals. We can alpply the same technique to the newly
matched nets, and recursively match a large portion num-
ber of nodes. Thin is called the zipper method since the
matching works like a zipper as it closes up the unknown
parts of the isomorphism. Thii method copes very well
with finding a ‘near-isomorphism’ when the two netlists
don’t match. It matches 24 large number of cella and nets
based on i-environments and then matches se much local
information se the user designated. Since it cannot con-
tinue matching beyond where the isomorphism approxi-
mation breaks down, it tends to stop exactly where the
user made the error. This robustness is one of the al-
gorithm’s most important features! Single errors often
cause enormous problems to programs that work by zip-
per methods only.

Each time the ialgorithm matches two nodes from
N(G(G)) and N(C(&)), it looks at the He, HI,. . . ,I!&
values of all the neighboring nodes of the two picked
nodes. If it fin& a pair of neighboring nodes that have
the same Hi value and no other node shares that value,
it matches those tw,o nodes. If two nodes have the same
unique Hi value (which no other node shares) and dif-

I I
L-------------------______.

Figure 5: Circuit Example

&rent Hj+i values the algorithm matches the two nodes,
guessing that the breakdown in the isomorphism function
occurs in a node at distance j+ 1 from the newly matched
nodea.

4 output

Netliit comparison is a second order program - it oper-
ates upon the output of other programs. Users enter their
logic designs with a schematic capture editor and their
layouts with a layout editor. Concepturlly the input to
the program is a set of graphics information. Our impIe-
mentation of the compare program provides two meth-
ods of output: graphics output that is integrated with
the graphics editor, providing a uniform interface for the
user, and au ASCII listing which can be used by other
programs.

Displaying Errors
In our implementation, errors are displayed by highlight-
ing the non-matching portions of the two nets in the same
editors that were used to create them. La figure 5 below
the schematic matches the layout. In figure 6, net A in
the schematic no longer matches net A in the layout and
the error is highlighted.

Other Output

The isomorphism function constructed by our algorithm
has many uses beyond merely demonstrating that two
netlista match. Given the one-to-one correspondence be-
tween net in the two circuits, we can use the additional
information supplied by component extraction. The ex-
traction program gave us the netlist of lthe layout, but
it also calculated additional information about the cir-
cuit, such as parasitic capacitance, resistance values, and

Paper 42.3
706

I
I
I
I
I
I

I I
I
I
I
I

I I
I I
L-------------------------,

-cur

i

q
@f4
GND

Figure 8: Highlighting Errors

-.

s1-

--I

I
I
I
I
I
I

SIGNRIE--OM) I
--&----a* --------------->

Figure ‘7: An Example of Backannotation

device sizes. The program backannotates the schematic
with these values. This helps the layout engineer by doc-
umenting the actual capacitance load of the net. (See
figure 7.)

More details on output format can be found in
Ellickson- Tygar[84].

5 Experiment al Results

In addition to testing on “real world” cases, we wrote a
program to generate sample netliits for comparison. This
program generates a netlist with characteristics of typical
MOS circuits (- l/4 connections to MD, N l/4 connec-
tions to cND, rest random). It then scrambles the order
of the parts, randomly swaps some swappable pins, intro
duces a known number of errors, and writes out another
“near-isomorphic” net&t.

We first tested for running time vs. netlist size. We
generated netliets with n transistors, n/3 nets, and only
2 labels (as if only MD and GND are labelled.) Here are
the results (times are for a 8MHz 68010 and 1 wait state):

Num. of transistors (50 100 200 400 600 800
Tims/tran#. (ii ma)) 51.0 56.5 59.3 79.4 69.3 243.3

Note that the running time behavior is close to linear
until the hash table becomes saturated (the hash table has
800 locations). The hash table size could be arbitrarily
extended. Since comparison in practice is hierarchical,
this is not needed.

In the next test, we took almost unlabelled graphs (only
3 labels) and introduced errors by reconnecting one ter-
minal of one device. In the best possible case, this should
report only 2 unmatched nets. We tried 92 cases from size
n = 9 to n = 100. The reported errors were as follows:

Num. oferrormesrages 1 2 3 4 5 6 7 8 9 10
Frequsncy ~8533000001

So the program is robust in the case of the most com-
mon problems - lack of labelling and errors. Another
example showe that this is true even when multiple er-
rors are introduced. We introduced multiple number of
errors in a random 100 transistor net list with no labels:

Num. of introduced erron 1 0 1 2 3 4 5 6 7
Nam.ofrrrormemgcr 10 2 4 5 5 8 9 10

so the algorithm succeeds in matching most nets despite
a large number of errors, even in the complete absence
of labels. This behavior makes the program extremely
useful for IC design work.

Another interesting test is to measure execution time
vs. number of labelled nets. This test, with 100 transis-
tors and 40 nets, shows that the algorithm depends very
little on labelled nodes

Nnm. of kbelled nodea 1 0 1 2 5 10 20 40
Time (in sea.) [5.6 6.6 .!3.6 5.7 5.5 5.4 5.6

The program delivers in practice what the algorithm
promises in principle.

6 Conclusion

The comparison algorithm discussed in this paper works
efficiently with hierarchical and non-hierarchical designs
without the restrictions imposed by previous comparison
algorithms. In particular, it is fast, robust in the presence
of errors, and insensitive to the number of labelled nets.

Considerable care has been taken to implement a
straightforward user interface. The input for the compar-
ison is generated by integrated schematic and IC layout
editors. The results of the comparison can be displayed
with the same editors.

Paper 42.3
707

This compare Iprogram has been shown to be a tool
applicable to many different design styles. It has been
field-tested by users on many different circuits ranging
from NMOS and CMOS microprocessors to digital bipolar
chips.

7 Acknowl.edgement s

We are indebted l;o Lou Scheffer for his many insightful
comments and for his assistance in obtaining the exper-
imental data. Also, thanks to Juan Leon, Roger Scott,
and Miie Turner for their helpful remarks. The first au-
thor was supported in part by a NSF graduate fellowship
and NSF grant MCS-81-21431.

8 References

Alezander[W] D. Alexander. “A Technology Indepen-
dent Design Rule Checker.” hoc. 3rd USA-Japan
Comp. Conf. (1978) pp. 412 - 416.

Barkej84] E. Barke. “A Network Comparison Algorithm
For Layout Verification of Integrated Circuits.”
IEEE Thnrr. on CAD 3 (1984) pp. 135 - 141.

Carter- Wegman[70] J. Carter and M. Wegman. “Univer-
sal Classes of Hash Functions.” Proc. 17tb ZEEE
Found. of camp. Sci. (1976) pp. 106 - 112.

Ellickron-Tygar[84] R. Ellickson and J. D. Tygar. UHier-
archical Lo& ComparisonD Proc. MZDCON ‘84
(1984).

Hofman/82] C. Hoffman. Group-Theoretic Algorithms
and Graph .Isomorphism. Springer-Verlag (1982).

Luks[8O] E. Luks. “leomorphism of Graphs of Bounded
Valence Can Be Tested in Polynomial Time.”
Proc. 2Zst IEEE Found. of Camp. Sci. (1980) pp.
42 - 49.

Rabin[76] M. Rabin. ‘Probabilistic Algorithms.” Algo-
rithms and Complexity. (J. ‘Baube, ed.) Aca-
demic Press (1976).

Read-Cornei[l’l7] R. Read and D. Corneil. ‘The Graph
Isomorphism Disease.” J. Graph Thory 1 (1977)
pp. 339 - 363.

Reif-Tqgar[84] J. Reif and J. D. Tygar. Efficient Parallel
Random Number Generation. To appear; avail-
able ss Harvard U. Tech. Rep. TR-07-84.

Scheger/84] L. Scheffer. The Use of Strict Hierarchy for
Verification of Integrated Circuits. Ph. D. Thesis,
Stanford U. (1984).

Schefier-Apte[78] L. Scheffer and R. Apte. ‘LSI design
verification using topology extraction.” Proc. 12th
AsiZomar Conf. Circuits Syst. and Comp. (1978)
pp. 149 - 153.

Paper 42.3
708

