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Abstract 

Programs to compare the layout of ICs with their 
schematics have recently appeared. These programs 
have liited functionality and require large amounts of 
CPU time. We discuss the implementation of a fast 
[O(n(logn)*)] logic comparison algorithm which uses hi- 
erarchy and randomization. This algorithm handles 
swappable components without perfomance degradation 
and is extremely robust in the presence of input errors. 
We include experimental data. 

1 Introdulction 

Netlist comparison determines whether two circuits are 
identical, and identifies the differences if they are not. It 
is most commonly used for comparing netlists extracted 
from schematics with the netlists extracted from the cor- 
responding IC layouts. 

Historically, comparison of layouts and logic was done 
manually. Large plots were traced with colored pen- 
cils and laboriously compared with the schematics. This 
method was tedious and error-prone. Several years ago 
programs were developed that could extract a netlist from 
an IC layout, eliminating one source of error (Alczan- 
&r/78/). Later, programs appeared that could compare 
the netlist extracted from the layout with a manually en- 
tered netlist. This reduced the possibility of comparison 
errors but depended on the quality of the human transla- 
tion from schematic to net&t. Now designers can graphi- 
cally enter schematics into workstations where the netlist 
will be automatically generated. At last the netlists from 
the layout and the schematic are available for comparison 
in machine readable form (Schefjer-Apte[78/, Bark&j). 

As logic designs and IC layouta become larger, the com- 
parison task becomes more difficult since comparison is 
CPU intensive and the netlist data requires increasing 
amounts of memory. Even when comparison is compu- 
tationally feasible,, conventional representations of netliit 
data make it diffi~cult to isolate even very simple errors 
such as a power-ground short on large circuits since the 
short can occur in any subcircuit using power and ground 

nodes. Even worse, the presence of .a single error can 
cause many spurious errors to be generated, propagating 
warning messages far out of proportion to the original er- 
ror; much as a programming language compiler with bad 
error correction may report numerous, warnings caused 
by a single error. The analogy is misleading because the 
situation with IC comparisons is much worse than with 
program compilations. Regardless of Ehe verbosity of a 
compiler’s error output, one can usually find the first er- 
ror in a faulty program and fix it. Since there is no natural 
ordering of the netlists derived from a two-dimensional IC 
representation, there is no easy way to determine the true 
mistake from the error report. 

With these faults of previous netliet comparators in 
mind, we set out to develop a new logic comparison pro- 
gram which attacked these problems on three fronts: 

. 

. 

l 

2 

Hierarchy. We allow the comparison to be done inde- 
pendently on any level of the hierarchy. This tremen- 
dously decreases execution time and isolates errors to 
a eingle subcircuit. 

Randomization. At each level of hierarchy, the 
netlists are compared by a new randomized algorithm 
that requires time O(n(Iogn)*) time (where n is the 
size of the netlist). In a typical design this gives 
two orders of magnitude savings over other compari- 
son algorithms done on flat artwork. This algorithm 
works well whether the designer p.artially labels his 
nets or doesn’t 1abeI any nets at ah. 

Enhanced Output Facilities. If the circuits don’t 
match we display the unmatched nets graphically; 
if the circuits do match we provide cross-referencing 
of additional information, such as parasitic capaci- 
tance, between the layout and the schematic. 

Hierarchy 

Our algorithm operates on two netlists. The netlists can 
be hierarchical or non-hierarchical. However hierarchy 
provides several advantages for netlist comparison. 

Hierarchy allows users to compare parts of the design 
without having the schematic and layout completed for 
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Figure 1: Swapping Terminal8 

the entire design. For example, two higher order cells 
can be compared without the lower order cells being fdy 
specified. This is extremely useful for top-down chip com- 
position; users can check the layout against the schematic 
step-by-step 84 they design the chip. 

Hierarchy also helps to localize error detection and re- 
porting to the cell being compared. 

If a strict hierarchy with no overlap of included cells is 
used then additional benefit8 can be gained (ScAefier[8Q). 
Strict hierarchical circuit descriptions not only promote 
good style, they also substantially simplify the task of 
net&it comparison. If each level of hierarchy contains in- 
formation about no more than k subcircuits and net8 and 
F(n) represents the expected required time to compare 
two flat descriptions containing n subcircuits and nets, 
hierarchy reduces the time for comparison to F(k) logk n. 

Hierarchical input presents a number of complications 
for the implementor. Because designers tend to construct 
subcircuits with inherent symmetries, sets of terminals at- 
tached to the subcircuit may be interchangeable. Instead 
of hard-coding specific interchangability (such as swap- 
ping DRAIN and SOURCE in a MOSFET) we generalized 
the algorithm to allow two different types of swapping. 

Swapping Terminals 
We alIow the designer to indicate that terminals are swap- 
pable by attaching swap properties to them. For ex- 
ample, in figure 1, terminals A and B can be swapped. 
This implementation allow8 any number of terminal8 to 
be swapped. An example of a NAND gate with three 
swappable terminals can be seen in figure 2. 

Swapping Sets of Terminals 

Entire sets of terminals may also be electrically equiv- 
alent and therefore interchangeable with other sets. In 
figure 3 the set of terminals < A, 8, C > can be inter- 
changed with < D, f, P >. This style of swapping is 
indicated by a property that ia attached to the subcir- 
cuit. Furthermore, our implementation allows swappable 
information to be specified globally (for example, letting 
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Figure 2: Swapping Three Terminals 
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Figure 3: Swapping Sections 

DRAIN and SOURCE swap on every MOSFET) or to be in- 
dependently specified for each subcircuit. We have found 
that it b absoluteiy necessary for the compare program 
to allow swapping (without degradation of performance) 
if it is to be a viable tool. 

3 Randomization and Comparison 
Each netlist e ha8 an equivalent unique bipartite graph 
G(L) defined by this procedure: Create a node in G(e) for 
each cell or net in L If a cell is connected to a net by a 
terminal in e, connect the corresponding nodes in G(e) by 
an edge. If nets, cells, or terminals are named in e, label 
the corresponding nodes or edges in G(e) with the same 
name. (We denote the edges of G(e) as E(G(e)) and the 
nodes of C(e) a8 N(G(e)).) 

We say that two netlists er and 42 motcb (el - ex) when 
there is an isomorphism between the graphs G(f$) and 
G(Lr). If all the nets and cells in two netlists !Jr and & are 
uniquely named, we can rapidly check whether Ll N f.8. 
The unique names specify one-to-one functions; f&gea : 
W(h)) -) WW) ad fnode. : W-W,)) - N(GP?z)). 
The netlists match exactly when f is an isomorphism. If 
the & + 4, the error may be easily isolated by finding 
which edges and nodes have to be added to G(!r) and 
C(Lr) to make the graphs isomorphic. 

Unfortunately, in real design8 most nets are unnamed 
and several distinct instances of a cell may share the 
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same name since cells are typically named by their type. 
A netlist comparator must therefore construct the iso- 
morphism function. Of course, the isomorphism function 
must stil1 respect the labelling of the graphs - two la- 
belled items can be correlated only if they have the same 
label. This ia called the Partially Labelled Graph Isomor- 
phism Problem. 

If the !r + Q, a good netlist comparator will construct 
a relation that is EI “near-isomorphism”, i.e., a relation be- 
tween E(G(&)) and E(G(&)) and also between N(G(L1)) 
and N(G(Q)) that which to the greatest extent posaibIe 
maps items in G(r!r) into items in G(fs) that are izomor- 
phic within some local subgraph. (We will make this 
notion more precilee later in this paper.) As users, we 
measure of the qnality of the error reporting of netliat 
comparators by the degree to which its relation correctly 
predicts what we, the users, intended to do. A more con- 
crete measurement is given by the number of error mea- 
sages the comparator produces on a given input; the fewer 
messages, the better the “near-&morphism” relation. 

It has been shown that if an algorithm P exists which 
solves the Partially Labelled Graph lsomorphism Problem in 
time T(n), there exists au algorithm I which solves the 
Graph lsomorphism Problem (which is to check whether 
two graphs are isomorphic) in time (T(n))k for a fixed k > 
0. Since the Graph lsomorphism Problem is widely believed 
to be intractable,1 it would seem that development of 
an efficient al’gorithm for netliet comparison is infeasible 
(Hoflman[82), Rca8d-Corncil[77j). 

Despite these negative theoretical results, we can de- 
velop a fast isomorphiem algorithm because circuits de- 
signed to be implernented in PC boards or IC’e don’t dis- 
play the same generality that graphs do. We can exploit 
this fact by using randomized techniques. 

Randomization is a relatively recent innovation in algo- 
rithms, which frequently makes problems which can not 
be efficiently solvecd using deterministic methods easily 
approachable (Rabin[76j). Given two netlists that satisfy 
our specifications, our randomized algorithm will never 
claim that Lr and Lr: match when they don’t; more impor- 
tant, the algorithm is guaranteed to find a match (if it ex- 
ists) between netli&s Lr and Ls in O(n(log ra)2) time with 
an arbitrarily high probability. For example, we could 
make the probability that the algorithm fails smaller than 
the probability that a meteor will suddenly fall from outer 
space and destroy the computer the algorithm is running 
Oll. - 

lPolynomial time eolntionr to the Graph lsomorphism Problem have 
been found for grapha of bounded valence (Luk+O~; however the 
exponent in the execution time of these algorithms grow* very 
quickly with respect to the valence. Since we will be conridering 
hierarchical circuita which may have celL with many connected 
terminals and n&e which will have an unbounded number of con- 
nected terminals, thaw algorithms won’t help ua. 

Restrictions on Netlists 

We tailored the restrictions on our netlists to model the 
way that people actually design logic. The restrictions 
listed will not interfere with real practice. Let g be a 
netlist, n =I G(t) 1. 

Restriction 1: There is an upper bound Teen on the 
number of terminals connected to any cell in e. (Physical 
characteristics prevent cells with unbonnded number of 
terminals.) 

Restriction 2: There is an upper bound Tnet on the 
number of terminals connected to almost any net in e; at 
most a fixed number B of nets exceed the Tner bound. 
(Stylistic considerations prevent this condition from be- 
ing violated. If it is accidently violated:, it can be easily 
discovered by error detection facilities.) 

Let G be an arbitrary graph; no E N(G). The i- 
environment of no (A(nc,i)) is the subgraph S C G in- 
duced by nc and all the nodes in N(G) connected to no 
by some path of at most i edges in G. 

Recall that the graph G is said to have a non-trivial 
automorphism if there is an isomorphism function f : 
N(G) + N(G). The unjized nodes of G (UNFIXED(G)) is 
the set 

{z ) z E N(G), f(z) # z for some automorphism f} 
Intuitively, the unfixed nodes are those nodes that can be 
switched by some automorphism. 

Restriction 3: Partition UNFIXED(G(~Z)) into con- 
nected sets (Sr, Ss,. . .). There are at most v = O(logn) 
automorphisms on each Si. (If this condition wasn’t 
statisfied, SJ would induce a complete graph (or a near- 
complete graph) of unbounded size. This is not a config- 
uration which arises in real circuits.) 

Restriction 4: zf mo,no E N(G(f3), mo,no G 
UNFIXED(G then there is some u =: O(logn) such 
that A(tr~,u) 9 A(no, u). (Informally, this says that if 
two nodes cannot be interchanged, we can discover this 
fact by looking at the circuit within O(logn) edges of 
the two elements. Circuits failing this condition do occur 
sometimes; they are those circuits which have a repeated 
design normally handled by hierarchy. If for some resson 
they occur in a single (flat) level of hierarchy, the circuit 
can be matched in linear time by using th,e ripper method 
discussed below. For example, see figure 4. The nets at 
Y and Y-l cannot be distinguished in fewer than Y - 1 
elements. The zipper method distinguishes the two nets 
in linear time, however.) 

Random Hashing 
Our algorithm works by repeatedly hashing nodes in G(1). 
Unfortunately, we have no way of knowing what the prob- 
ability distribution of L is. Therefore if was tried to fix a 
specific hazh function h, we would have to assume worst- 
case behavior which might involve many collisions. 

By choosing our hash function h from a set H = 
{hhz,. . .I we can get guaranteed good behavior with 
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Figure 4: A Circuit Failing Restriction 4. 

very high probability. What must the structure of the 
set H be? Carter- Wegman[76] answered that question 
by introducing the following definition and lemma: 

Definition: Let H be a set of functions mapping set 
A into set B. H ia universal1 if for every I E A, y E B 

Lemma: Led A and B be sets. A universala set E 
exists composed of hssh functions from A to B. If z E A 
and S c A and h E H ia randomly chosen, then 

Pr(h(z) E h(S)) 5 & 

where Pr indicates expected probability. 
We immediately have the following theorem: 
Theorem: Given a L satisfying our restrictions and 

6xed i,e > 0, there is a universal2 Hi which constista of 
functions mapping A(no, i) -+ [l, 2,. . . ,2c] (where no E 
N(W))- 

Proof: We proceed by induction. A(m,O) is al- 
ways the graph consisting of a single node which is distin- 
guished only by name. According to the lemma, there is 
a universal2 function mapping the name into (1,2,. . . , !Y]. 
This is HO. 

Suppose i 2 1, and we have constructed Hi-l. Using 
the unique numbering on the edges connected to no im- 
plied the the unique numbering on the terminals of cells, 
consider the ordered pair 

of neighboring nodes of no. By restrictions 1 and 2 
these are all the neighbors of no except in B cases. (We 
write T = max(T,,u, T,,.t) .) For those abnormal cases, use 
heuristics or guessing to uniquely identify the nodes and 
assign no a random chosen integer rd E [l, . . . ,2’] where 
1 5 i 5 B and i indexee the abnormal node. Otherwise, 
let h E Hi-1 be randomly chosen, and compute 

< h(m), h(m), h(m), . . - ,h(mr) > - 

Consider the universal2 function X which maps T-tuples 
of values to [1..2’]. X exists by the lemma; and the corn- 
bin&ion of X and Hi-1 is a universal2 map. Parameterize 
Hi by X X Hi-l. 0 

Note that if h E Hi then h can be calculated in O(n;) 
operations.* 

Note further that if we were concerned with swappable 
pins, the above proof would have to be modified. If for 
example, terminala 1 and 2 were awappable for the cell 
corresponding to no, then instead of computing 

< h(ml), h(m& h(ms), . . . , h(mT) > 

we could compute 

< h(ml) @ h(m), h(ms), . . . , h(v) > 

where Q is, for example, addition modulo 2c. (The discus- 
sion in Rcif-Tygar[t?d] is helpful for understanding this.) 

The Algorithm 

Here is algorithm for determining whether netlists &,& 
satisfying our restrictions match, and if they do, finding 
the isomorphism function f between G(&) and G(L,): 

1. 

2. 

3. 

4. 

5. 

6. 

Using restrictions 3 and 4 fix u = O(logn) and 
v = O(logn). (Tie: 0). 

Compute G(d) and G(&). (Time: O(n)). 

Randomly pick h E H,,. Calculate h on N(G(L1)) 
and N(G(&)). This randomly hashes all the nodes 
in the graphs according their u-environments. By 
the theorem and restriction 4 all the nodes in the 
graph that are not unfixed have been assigned to 
unique values with probability (1 - 2-c)n. If z E 
N(G(fl)), y E N(G(&)), let f(z) = f(y) if h(z) = 
h(y). (Time: O(nIogn)). 

With high probability, only unfixed nodes have not 
been matched uniquely. Partition the unfixed nodes 
into connected sets. (Time: O(n)). 

By restriction 4, an isomorphism cau be established 
between two specific nodes x E N(G(Q) and y E 
N(G&)) if h(z) = h(y). However, establishing a 
correlation between z and y may fix an isomorphizm 
for elements in the connected sets that z and y lie 
in. Simultaneously fix an isomorphism for one pair 
of values in each of the connected sets, and assign a 
random value in [l,. . . , 2O] ss the hash value for that 
pair. Repeat steps 3 and 4. By restriction 3 we 
will onIy have to repeat steps 3 and 4 O(Iog n) times 
at most. (Time: O(n(log ra)‘)). 

Verify that f is an isomorphism function by walking 
thrqgh the graphs. (Time: O(n)). 

‘h can be quickly calculated in parallel. The theorem has several 
number-theoretic applications. A discussion of there issues will 
appear in a later paper. 
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Note that in the worst case the above procedure will 
take O(n(log n)*:) time. This procedure can fail ouly when 
the random hash function gives the same hash value to 
two nodes which can’t be correlated in the given isomor- 
phism function; when we execute step 3 we might mis- 
assign the isomorphism. This can ody happen when en 
unlucky stream of random numbers are generated; there 
is no “fatal circuit’ which causes the algorithm to run 
beyond its time bounds consistently. The probability of 
this procedure succeeding is (1 - P)“” 1 (I - nu2-=) = 
1 - O(n log n)/2e which can be made close to 1 by choos- 
ing large values of E. (In practice, of course, we handle the 
exceptional case by iterating until we make no progress, 
since it ia much better to have the program exceed the 
time bounds than to give an incorrect answer.) 

Zipper Method 

Actual use of the algorithm revealed that it ran more 
quickly than the analysis above would suggest. Users 
tend to label subcircuits and nets liberally, avoid excek 
sive automorphiern, and use hierarchy effectively. Engi- 
neers seem to feel that circuits designed in theee ways are 
easier to design, change, and understand. 

These observations led us to a modification of the above 
algorithm. Thii modification also adds error-detection fa- 
cilities. We dynamically maintain structtuee containing 
all the unmatched nodes. As we iteratively find corre- 
sponding nodes by the above algorithm, we remove the 
nodes from the list. When we Iind two matching nodes, 
we can speed the calculation of isomorphic points by ex- 
ploiting structural properties. For example, if two cells 
are matched by the isornarphii function and the cells 
aren’t connected to any swappable terminals, we can im- 
mediately match the neta corresponding to the given ter- 
minals. We can alpply the same technique to the newly 
matched nets, and recursively match a large portion num- 
ber of nodes. Thin is called the zipper method since the 
matching works like a zipper as it closes up the unknown 
parts of the isomorphism. Thii method copes very well 
with finding a ‘near-isomorphism’ when the two netlists 
don’t match. It matches 24 large number of cella and nets 
based on i-environments and then matches se much local 
information se the user designated. Since it cannot con- 
tinue matching beyond where the isomorphism approxi- 
mation breaks down, it tends to stop exactly where the 
user made the error. This robustness is one of the al- 
gorithm’s most important features! Single errors often 
cause enormous problems to programs that work by zip- 
per methods only. 

Each time the ialgorithm matches two nodes from 
N(G(G)) and N(C(&)), it looks at the He, HI,. . . ,I!& 
values of all the neighboring nodes of the two picked 
nodes. If it fin& a pair of neighboring nodes that have 
the same Hi value and no other node shares that value, 
it matches those tw,o nodes. If two nodes have the same 
unique Hi value (which no other node shares) and dif- 

I I 
L-------------------______. 

Figure 5: Circuit Example 

&rent Hj+i values the algorithm matches the two nodes, 
guessing that the breakdown in the isomorphism function 
occurs in a node at distance j+ 1 from the newly matched 
nodea. 

4 output 

Netliit comparison is a second order program - it oper- 
ates upon the output of other programs. Users enter their 
logic designs with a schematic capture editor and their 
layouts with a layout editor. Concepturlly the input to 
the program is a set of graphics information. Our impIe- 
mentation of the compare program provides two meth- 
ods of output: graphics output that is integrated with 
the graphics editor, providing a uniform interface for the 
user, and au ASCII listing which can be used by other 
programs. 

Displaying Errors 
In our implementation, errors are displayed by highlight- 
ing the non-matching portions of the two nets in the same 
editors that were used to create them. La figure 5 below 
the schematic matches the layout. In figure 6, net A in 
the schematic no longer matches net A in the layout and 
the error is highlighted. 

Other Output 

The isomorphism function constructed by our algorithm 
has many uses beyond merely demonstrating that two 
netlista match. Given the one-to-one correspondence be- 
tween net in the two circuits, we can use the additional 
information supplied by component extraction. The ex- 
traction program gave us the netlist of lthe layout, but 
it also calculated additional information about the cir- 
cuit, such as parasitic capacitance, resistance values, and 
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Figure ‘7: An Example of Backannotation 

device sizes. The program backannotates the schematic 
with these values. This helps the layout engineer by doc- 
umenting the actual capacitance load of the net. (See 
figure 7.) 

More details on output format can be found in 
Ellickson- Tygar[84]. 

5 Experiment al Results 

In addition to testing on “real world” cases, we wrote a 
program to generate sample netliits for comparison. This 
program generates a netlist with characteristics of typical 
MOS circuits (- l/4 connections to MD, N l/4 connec- 
tions to cND, rest random). It then scrambles the order 
of the parts, randomly swaps some swappable pins, intro 
duces a known number of errors, and writes out another 
“near-isomorphic” net&t. 

We first tested for running time vs. netlist size. We 
generated netliets with n transistors, n/3 nets, and only 
2 labels (as if only MD and GND are labelled.) Here are 
the results (times are for a 8MHz 68010 and 1 wait state): 

Num. of transistors ( 50 100 200 400 600 800 
Tims/tran#. (ii ma) ) 51.0 56.5 59.3 79.4 69.3 243.3 

Note that the running time behavior is close to linear 
until the hash table becomes saturated (the hash table has 
800 locations). The hash table size could be arbitrarily 
extended. Since comparison in practice is hierarchical, 
this is not needed. 

In the next test, we took almost unlabelled graphs (only 
3 labels) and introduced errors by reconnecting one ter- 
minal of one device. In the best possible case, this should 
report only 2 unmatched nets. We tried 92 cases from size 
n = 9 to n = 100. The reported errors were as follows: 

Num. oferrormesrages 1 2 3 4 5 6 7 8 9 10 
Frequsncy ~8533000001 

So the program is robust in the case of the most com- 
mon problems - lack of labelling and errors. Another 
example showe that this is true even when multiple er- 
rors are introduced. We introduced multiple number of 
errors in a random 100 transistor net list with no labels: 

Num. of introduced erron 1 0 1 2 3 4 5 6 7 
Nam.ofrrrormemgcr 10 2 4 5 5 8 9 10 

so the algorithm succeeds in matching most nets despite 
a large number of errors, even in the complete absence 
of labels. This behavior makes the program extremely 
useful for IC design work. 

Another interesting test is to measure execution time 
vs. number of labelled nets. This test, with 100 transis- 
tors and 40 nets, shows that the algorithm depends very 
little on labelled nodes 

Nnm. of kbelled nodea 1 0 1 2 5 10 20 40 
Time (in sea.) [ 5.6 6.6 .!3.6 5.7 5.5 5.4 5.6 

The program delivers in practice what the algorithm 
promises in principle. 

6 Conclusion 

The comparison algorithm discussed in this paper works 
efficiently with hierarchical and non-hierarchical designs 
without the restrictions imposed by previous comparison 
algorithms. In particular, it is fast, robust in the presence 
of errors, and insensitive to the number of labelled nets. 

Considerable care has been taken to implement a 
straightforward user interface. The input for the compar- 
ison is generated by integrated schematic and IC layout 
editors. The results of the comparison can be displayed 
with the same editors. 
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This compare Iprogram has been shown to be a tool 
applicable to many different design styles. It has been 
field-tested by users on many different circuits ranging 
from NMOS and CMOS microprocessors to digital bipolar 
chips. 
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