
Geometric Characterization of
Series-Parallel Variable Resistor Networks∗

Randal E. Bryant
J. D. Tygar

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Lawrence P. Huang
IBM Corporation

11400 Burnet Road
Austin, TX 78758

April, 1994

Abstract

The range of operating conditions for a series-parallel network of variable linear resistors,
voltage sources, and current sources can be represented as a convex polygon in a Thevenin
or Norton half-plane. For a network with n elements of which k are variable, these polygons
have at most 2k vertices and can be computed in O(nk) time. These half planes are embedded
in the real projective plane to represent circuits with potentially infinite Thevenin resistance
or Norton conductance. For circuits that have an acyclic structure once all branches to ground
are removed, the characteristic polygons for all nodes with respect to ground can be computed
simultaneously by an algorithm of complexity O(nk).
Key Words: Worst case analysis, linear circuits, series-parallel networks, projective geometry.

1. Introduction

The task of worst case circuit analysis [7] involves determining the extreme ranges of circuit
operation given a set of possible variations in the circuit parameters. Most attempts to solve
this problem employ sensitivity analysis, where one computes the behavior of the circuit under
nominal conditions and characterizes the incremental effect of the possible variations [5, 6]. For
small variations, the analysis of varying individual parameters can accurately predict the effect of

∗This research was supported by the Defense Advanced Research Project Agency, ARPA Order 4976, by the National
Science Foundation, PYI Grant CCR-8858087, and by the Semiconductor Research Corporation under Contract 91-
DC-068. Additional funding was provided by TRW, Motorola, IBM, and the US Postal Service. A preliminary version
of this paper appeared in ISCAS ’93.

1

In IEEE Transactions on Circuits and Systems 1: Fundamental Theory and Applications, 41:11,
November 1994, pp. 686-698 (Preprint)

varying multiple parameters as well. Hence one can determine the extreme operating conditions
by applying a standard optimization method such as steepest-descent to maximize or minimize a
desired objective function (e.g., a particular branch voltage). When the parameters vary over a wide
range, however, characterizing the effect of these variations becomes more difficult. It can be shown
that applying steepest-descent methods based on individual sensitivities can lead to non-optimal
results [7]. A common practice is to use steepest-descent, but then to recompute the sensitivities
at the calculated solution point to determine whether changing some parameter would improve the
solution further [4]. Such a technique can determine if the computed result is locally optimal, but
it may not find the global optimum.

In his book on circuit theory [2], Calahan describes a method for performing a worst case analysis
of a variable linear resistor network by casting it as a linear programming problem. Unfortunately,
his method will not find the optimum solution when the optimum setting of the resistors causes
some of the branch currents to be reversed from their directions in the initial solution. Calahan’s
derivation overlooks this limitation. In proceeding from the first to the second equation on page
172, he multiplies both sides of an inequality with a factor that could possibly be negative, without
considering the need to change the sense of the inequality.

Methods have been proposed to efficiently compute the effect of any given variation [11, 14]. These
methods require explicitly computing a solution for each combination of parametric values, and
hence do not guide the search for extreme conditions.

An alternate technique is to use Monte Carlo methods to statistically characterize the effects of
possible variations by analyzing the circuit under a number of randomly-generated parametric
values. This approach is not guaranteed to detect the extreme operating points of the circuit,
especially when those points are statistically improbable.

A final method is to develop bounding techniques that succinctly characterize the potential range of
behaviors [19]. Bounding approaches have the advantage that they capture the full range of behav-
iors with a single computation. From this information the extreme points can readily be determined.
Bounding approaches based on interval analysis have been proposed for worst case circuit analysis.
Such methods can yield very pessimistic results, since the interval algebra completely ignores all
correlations between the different instances of a parameter.

This paper considers methods to bound the range of operating conditions for networks containing
variable, linear resistors. In earlier work, we have shown that computing the precise range of
possible voltages in an arbitrary variable resistor network is NP-complete [13]. This result explains
why standard optimization techniques such as steepest-descent and linear programming cannot
solve the worst case analysis problem even for the seemingly simple case of linear resistors—if
we could solve the worst case analysis problem efficiently, then this would give us a method for
solving a wide variety of difficult optimization problems [8]. Similarly, a reliable technique based
on Monte Carlo analysis would yield efficient randomized algorithms for these other problems.
Thus, it is unlikely that an efficient algorithm exists for worst case analysis of arbitrary, variable
resistor networks.

This paper describes an efficient method for computing exact bounds on the operating conditions
of a variable resistor circuit under the restriction that the circuit has a series-parallel structure. The
method handles networks of independent, variable linear elements: resistors, voltage sources, and
current sources. Arbitrary, nonnegative resistance values are allowed, including infinite ones. The

2

+
-

+1.0+-

R3 = 110±10

R
1 =

 100±10

R
2 = 100±10

+2.0

+

–

V

R30.0 40.0

0.05

-0.05

0.1

-0.1

0.0

Nominal

R1

R2

[–,+,–] [+,+,–]

Figure 1: Example of Variable Resistor Circuit. The range of possible Thevenin equivalent
circuits forms a convex polygon.

method derives exact results for any physically realizable series-parallel network. In particular, it
fails only under conditions where two voltage sources of potentially differing voltage are connected
in parallel or where two current sources of potentially differing current are connected in series. Our
method is superior to one based in interval analysis in that the computed solution contains only
operating points that could actually arise for some setting of the circuit parameters.

Worst case analysis of variable resistor networks is required when modeling MOS circuits by linear
switch-level simulation [18]. In this approach to simulation, transistors are modeled as switched,
linear resistors, while node voltages are approximated by logic values {0, 1, X}, where X indicates
an unknown or potentially nondigital voltage. When a transistor gate node has value X , the
transistor is assumed to have an arbitrary resistance greater than or equal to its value when fully
on. The simulator must then compute the ranges of possible steady state voltages on the nodes for
all possible variations of the resistances to determine the new node states. Most linear switch-level
simulators use simplistic methods to compute the possible voltage ranges [3, 18]. At times they can
produce results that are overly pessimistic, computing a larger range than is actually achievable,
while at other times they produce results that are overly optimistic, computing a smaller range. In
fact, existing programs can even fail to compute the correct result for fixed resistance networks.

2. Summary of Method

Our approach takes a geometric view of the set of possible network operating points. The possible
Thevenin or Norton equivalent circuits for the network are viewed as points in a half-plane. Thevenin
equivalents having finite resistance are represented by points of the form 〈R, V 〉, while Norton
equivalents having finite conductance are represented by points of the form 〈G, I〉. Applying
concepts from projective geometry [1], we introduce a class of infinite “ideal” points to represent
infinite resistances and conductances. That is, the Thevenin equivalent of a current source is

3

given by ideal point 〈〈I〉〉, while the Norton equivalent of a voltage source is given by ideal point
〈〈V 〉〉. Note that unlike other geometric interpretations of optimization problems, our coordinates
correspond to derived quantities rather than to the optimization parameters.

Our main result is to show that the Thevenin or Norton equivalent of a series-parallel network
containing k variable elements can be represented as a convex polygon of degree (i.e., number of
vertices) less than or equal to 2k. Furthermore, if the network contains a total of n elements, this
polygon can be computed in time O(nk). Given such a polygon, one can easily determine the
ranges of possible steady state voltages, currents, resistances, or conductances.

Figure 1 illustrates this approach for a circuit used in [7] to illustrate the inability of small-scale
sensitivity analysis to solve the worst case analysis problem. The Thevenin representation of the
circuit across the two terminals is plotted on the right hand side of the figure. The Thevenin
equivalent under nominal conditions gives the point labeled “Nominal.” The lines labeled R1 and
R2 illustrate the sensitivities with respect to variations in these two resistors relative to their nominal
values. These sensitivities would seem to indicate that the minimum voltage would occur when R1

is minimized and R2 is maximized. Although not shown, sensitivity analysis also indicates that R3

should be minimized. Under these conditions we would obtain a Thevenin equivalent given by the
point labeled [−, +,−]. Note however, that the Thevenin voltage would actually be lower by setting
R1 to its maximum value, as denoted by the point labeled [+, +,−]. As this figure illustrates, the
range of possible Thevenin equivalents forms a convex polygon with 6 vertices. By computing
this polygon explicitly, we can determine the extreme values of the voltage across the terminals by
finding the vertices with minimum and maximum Y values.

For the special case of a “grounded tree” network, where the circuit becomes acyclic when all
branches to ground are deleted, we can compute the polygons for every node in the tree (relative to
ground) by an algorithm with time complexity O(nk). This algorithm is optimal in that it generates
n polygons, each having degree up to 2k.

This algorithm could form the basis for the steady state voltage computation in a linear switch-level
simulator. By performing series-parallel reductions on pullup and pulldown network structures,
most of the channel connected components found in MOS circuits can be represented as grounded
trees. The worst case complexity would be quadratic in the number of transistors, as opposed to
the linear complexity of existing algorithms. However, this worst case complexity would only arise
under the following conditions: (1) the channel-connected component is very large, (2) a large
fraction of the transistors must be modeled as variable resistors, and (3) the achievable voltages
on almost every node strongly depends on most of these variable resistances. Such a combination
would seldom arise in practice.

3. Geometric Representation

Our geometry is based on planar projective geometry [1], where the conventional set of “Euclidean”
points is augmented by a set of “ideal” points denoting the intersections of parallel lines. We restrict
Euclidean points to lie in the half-plane having Cartesian coordinates with x ≥ 0. In electrical
terms, this means that no negative resistances or conductances are allowed.1 Ideal points represent

1This restriction is introduced for sake of simplicity. It avoids the difficulty in projective geometry of defining an
ordering of points on a line—a line is viewed as “wrapping around” through its ideal point. It seems likely that our

4

+
−

↑

V = 1.5 I = –0.75 R = 0.5

A B C

EUCLIDEAN IDEAL

V
R1 .0 2 .0

1 .0

-1 .0

2 .0

-2 .0

1 .0

-1 .0

2 .0

-2 .0

A

B

C
I

G1 .0 2 .0

1 .0

-1 .0

2 .0

-2 .0

1 .0

-1 .0

2 .0

-2 .0

A

B

C

EUCLIDEAN IDEAL
Thevenin Representation Norton Representation

Figure 2: Geometric Representations of Fixed Circuit Elements. Each element is represented
by a point in the Thevenin and Norton half-planes.

values at x = ∞. In electrical terms, these points describe the behavior of infinite resistances
and conductances. Despite the inclusion of ideal points, many of the key concepts carry over
from Euclidean geometry. We will refer to the two regions for representing circuit behavior as the
Thevenin and Norton “half-planes.”

3.1. Points

The set of points P consist of Euclidean points of the form 〈x, y〉 for real values x and y such that x
is nonnegative, and ideal points of the form 〈〈m〉〉 for real value m. Ideal point 〈〈m〉〉 can be thought
of as representing the limit of the set of points {〈x, mx + b〉 |b ∈ �} as x approaches infinity. As a
naming convention, we will denote the coordinates of a point by subscripting the coordinate name
with the point name, e.g., point p will have coordinates xp and yp if it is a Euclidean point, and mp

if it is an ideal point.

A point in the Thevenin or Norton half-plane characterizes a circuit for a particular setting of the
element values. Figure 2 illustrates several examples of fixed circuit elements. In this figure, the

approach could be extended to handle negative resistances.

5

half-planes are drawn with Euclidean points on the left and ideal points on a separate axis on the
right. Note that the X axis for the Euclidean points actually extends indefinitely far to the right.
Note also that the vertical scale for ideal points will generally differ from that for Euclidean points.
A voltage source V is represented in the Thevenin half-plane by the Euclidean point 〈0, V 〉 and in
Norton half-plane by the ideal point 〈〈V 〉〉. A current source I is represented in a dual way as the
ideal point 〈〈I〉〉 in the Thevenin half-plane and as the Euclidean point 〈0, I〉 in the Norton. Finally,
a nonzero, finite resistance R is represented in the Thevenin half-plane by the Euclidean point
〈R, 0〉 and in the Norton by the point 〈1/R, 0〉. Euclidean point 〈0, 0〉 is of special interest—it
is the Thevenin representation of a short circuit and the Norton representation of an open circuit.
Also of special interest is ideal point 〈〈0〉〉—the Thevenin representation of an open circuit and the
Norton representation of a short circuit.

As notation, we will say that points p and q are ordered left to right, denoted p ≺ H q (for “Hori-
zontal”) if either p is a Euclidean point while q is an ideal point, or both are Euclidean points and
xp is less than xq. Similarly, we will say that p and q are vertically aligned, denoted p ≡ H q (for
“horizontally equivalent”) if either both are ideal points or are Euclidean points with identical X
coordinates. Observe that for any two points p and q, we must have either p ≺ H q, p ≡ H q, or
q ≺ H p. Points p and q are ordered p
 H q if either p ≺ H q or p ≡ H q.

Vertically aligned points p and q are ordered vertically, denoted p < V q if either both are ideal
points and mp is less than mq, or both are Euclidean points and yp is less than yq. Note that points
that are not vertically aligned are considered unordered with respect to this relation. Points p and
q are ordered p ≤ V q if either p < V q or p = q.

Point p is said to be between points pa and pb if one of the following sets of conditions holds. For
the case where pa ≺ H pb, we must have pa
 H p
 H pb. For the case where pb ≺ H pa, we must
have pb
 H p
 H pa. For the case where pa ≡ H pb, we must have either pa ≤ V p ≤ V pb or
pb ≤ V p ≤ V pa. Note that a point can be between two others without being colinear.

3.2. Lines

Lines in a half-plane are categorized as either “angled,” “vertical,” or “ideal,” depending on the
orientation and the X coordinates. An angled line is characterized by its slope m and its Y -intercept
b:

λ A (m, b) .
= {〈x, mx + b〉 |x ≥ 0} ∪ {〈〈m〉〉}

A vertical line consists of all points having a given X coordinate:

λ V (x) .
= {〈x, y〉 |y ∈ �}

The ideal line consists of all ideal points:

λ∞
.
= {〈〈m〉〉 |m ∈ �}

In comparing our geometry to Euclidean geometry, we see that angled and vertical lines correspond
to the portions of lines in the plane having Cartesian coordinates with x ≥ 0, while the ideal line
has no analog. Note that unlike in Euclidean geometry, parallel lines may intersect. In particular,
all angled lines with slope m contain the ideal point 〈〈m〉〉.

6

+
−

↑

V = 1.25

0 ≤ R ≤ ∞
I = –0.75

+
−

↑

V = 1.25

0 ≤ G ≤ ∞

I = –0.75

≡

A A’

↑

G = 0.8–∞ < I < ∞+
−

–∞ < V < ∞

R = 1.25

≡

B B’

V
R

2 .0

-2 .0

1.25

-1.25

1 .0

-1 .0

0.75

-0.75

1.0

A

B

slope = –0.75

EUCLIDEAN IDEAL

I
G

2.0

-2.0

1 .25

-1 .25

2 .0

-2 .0

0.75

-0.75

1 .0

A’

B’

slope = 1.25

EUCLIDEAN IDEAL

Angled:

Vertical:

Thevenin Representation Norton Representation

Figure 3: Circuits Represented by Lines. Each pair of circuits is equivalent.

7

In electrical terms, a line corresponds to a network containing a single variable element operating
over all possible values. Examples of circuits generating angled and vertical lines are illustrated
in Figure 3. A circuit consisting of a voltage source V in series with the parallel combination
of current source I and a variable resistor with 0 ≤ R ≤ ∞ (circuit A) is represented in the
Thevenin half-plane by an angled line with Y -intercept V and slope I . Observe that the Thevenin
representation of this circuit includes ideal point 〈〈I〉〉, indicating that when the resistance is infinite,
the circuit reduces to a current source. As indicated in the figure, this circuit is equivalent to one
with the current source in parallel with the series connection of the voltage source and the resistor
(circuit A’). Thus, the Norton representation of the circuit is also a line, but with Y -intercept I
and slope V . The Norton representation of the circuit includes the ideal point 〈〈V 〉〉, indicating that
when the conductance is infinite, the circuit reduces to a voltage source. A circuit consisting of
a variable voltage source with −∞ < V < ∞ in series with a fixed resistance R (circuit B) is
represented in the Thevenin half-plane by a vertical line with X-intercept R. As indicated in the
figure, this circuit is equivalent to one with the resistor in parallel with a variable current source
with −∞ < I < ∞ (circuit B’). Thus, the Norton representation of the circuit is also a vertical
line, but with X-intercept 1/R.

Any pair of distinct points p and q defines a line λ (p, q). The line type depends on the categories
of the two points, and on their vertical alignment:

1. Euclidean points p = 〈xp, yp〉 and q = 〈xq, yq〉 such that xp = xq define an angled line:

λ (p, q) .
= λ A

(
yq − yp

xq − xp

,
xqyp − xpyq

xq − xp

)

2. Euclidean point p = 〈xp, yp〉 and ideal point q = 〈〈mq〉〉 (listed in either order) define an
angled line:

λ (p, q) .
= λ (q, p) .

= λ A
(
mq, yp − mqxp

)
3. Vertically aligned Euclidean points p = 〈x, yp〉 and q = 〈x, yq〉 define a vertical line:

λ (p, q) .
= λ V (x).

4. Two ideal points p and q define the ideal line: λ (p, q) .
= λ∞.

Distinct points pa, pb, and pc are colinear provided λ (pa, pb) = λ (pb, pc).

3.3. Segments

Two distinct points p and q define a segment [p, q] consisting of the set of all points on the line
λ (p, q) lying between the two points. These points are called the endpoints of the segment. We
will refer to a segment as σ, σa, etc.

Relating our segments to Euclidean geometry, a segment with Euclidean endpoints corresponds
to the usual definition of a line segment. For Euclidean point p and ideal point q, segment [p, q]
corresponds to a ray directed to the right, with origin p and slope determined by q. The segment
formed by two ideal points has no counterpart in Euclidean geometry.

8

+
−

↑

0.5 ≤ V ≤ 1.5 –0.75 ≤ I ≤ 0 0 ≤ R ≤ 1.5

A B C

V
R1 .0 2 .0

1 .0

-1 .0

2 .0

-2 .0

1 .0

-1 .0

2 .0

-2 .0

A

B

C

EUCLIDEAN IDEAL

I
G1 .0 2 .0

1 .0

-1 .0

2 .0

-2 .0

1 .0

-1 .0

2 .0

-2 .0

A

B

C
C

EUCLIDEAN IDEAL

Thevenin Representation Norton Representation

Figure 4: Variable Circuit Elements and their Representations. Each is represented by a segment
in both the Thevenin and Norton half-planes.

9

As illustrated in Figure 4, a single, variable circuit element is represented by a segment in either
the Thevenin or Norton half-plane. A voltage source varying between Vmin and Vmax (circuit A) is
represented in the Thevenin plane as a line segment along the Y axis having end points 〈0, Vmin〉 and
〈0, Vmax〉 indicating that its Thevenin resistance is 0. The same source is represented in the Norton
plane as a line segment along the Ideal axis having endpoints 〈〈Vmin〉〉 and 〈〈Vmax〉〉, indicating that
it has infinite Norton conductance. The representations of a current source (circuit B) are the duals
of those for a voltage source—either a segment along the Ideal axis in the Thevenin half-plane or a
segment along the Y axis in the Norton half-plane. A resistor varying from 0 to a finite value Rmax

(circuit C) is represented in both Thevenin and Norton planes as horizontal line segments along
the X axis. In the Thevenin plane this segment has endpoints 〈0, 0〉 and 〈Rmax, 0〉, while in the
Norton plane it has endpoints 〈1/Rmax, 0〉 and 〈〈0〉〉. Note that this segment includes all Euclidean
points 〈x, 0〉 with x ≥ 1/Rmax. If this resistor had Rmax = ∞ (i.e., an open circuit), the Thevenin
representation would still be a segment, but the right hand endpoint would be the ideal point 〈〈0〉〉
and the segment would contain all Euclidean points 〈x, 0〉 for x ≥ Rmin. An angled segment with
nonzero slope describes circuits such as A and A’ illustrated in Figure 3, but with the resistance or
conductance operating over a more limited range.

3.4. Sets of Points

We have already introduced two types of point sets, namely lines and segments. As was discussed,
these types of sets represent networks containing a single variable element. When multiple variable
elements are present, we must consider more general classes of sets.

We will consider the properties of several functions operating over points, and their generalization
to functions over sets of points. For n > 0, define an n-ary point function as a mapping f :Pn → P .
Such a function is generalized to one mapping n sets of points to a set of points as:

f(S1, S2, . . . , Sn)
.
= {f(p1, p2, . . . , pn)|p1 ∈ S1, p2 ∈ S2, . . . , pn ∈ Sn}, (1)

i.e., as the union of the mappings of all of the points in the arguments. For the case where f
is undefined for some combination of point arguments, we will say that the generalization to set
arguments is undefined if the arguments contain any combination of points for which f is undefined.

From this definition, we can observe that such an extension must be monotonic over ⊆. That is, if
Si ⊆ Ti for all i, then f(S1, S2, . . . Sn) is defined whenever f(T1, T2, . . . Tn) is defined, and in this
case f(S1, S2, . . . Sn) ⊆ f(T1, T2, . . . Tn). Furthermore, if f :P → P is a bijection, then so is its
extension to sets.

3.5. Point Sequences

Point sequences provide a notation for describing the upper and lower boundaries of sets. A point
sequence is a finite sequence p1, p2, . . . , pk satisfying the following two properties. First, the points
are ordered left to right, i.e., pi
 H pi+1 for all 1 ≤ i < k. Second, distinct points are not vertically
aligned, i.e., if pi ≡ H pi+1, for some 1 ≤ i < k, then pi = pi+1.

Such a sequence defines a set of points consisting of the elements of the sequence, as well as those

10

in the segments connecting successive elements:

B (P) .
= {p1} ∪

⋃
1≤i<k

[
pi, pi+1

]

Note that {p1} is included in the equation above to cover the case where this is the only element of
P . Observe that for any q such that p1
 H q
 H pk, there is exactly one point p in B (P) such that
q ≡ H p. Given a point q such that p1
 H q
 H pk, we classify this point as being either below,
on, or above point sequence P according to its vertical ordering with respect to the point p in B (P)
such that q ≡ H p.

A point sequence is reduced provided each element is distinct, and no 3 successive elements are
colinear. Observe that for any point sequence P , we can form a reduced sequence P ′ such that
B (P) = B (

P ′) by simply eliminating any duplicate elements, as well as any point pi such that
pi−1, pi, and pi+1 are colinear.

Point sequence C is an upper contour (respectively, lower contour) for set S provided every element
ofB (C) is in S, and every point in S lies on or below (resp., above) C. Observe that if set S has both
upper and lower contours, then the initial and final elements of these contours must be vertically
aligned.

3.6. Convex Polygons

A set S is convex if for any distinct points p and q in S, all points in the segment [p, q] are also in S.
A convex polygon is a convex set S having an upper contour U and a lower contour L, both of which
are reduced. The distinct elements of U and L form the vertices of the polygon. The degree of the
polygon is the number of vertices. The edges of the polygon are the segments having as endpoints
successive elements of U or L, as well as segments connecting the initial or final elements of U
and L, provided these are distinct. Observe that a convex polygon of degree 1 has no edges; one of
degree 2 has a single edge; and one of degree k > 2 has k edges.

A convex polygon consisting of only Euclidean points matches the usual definition of a convex
polygon. As illustrated in Figure 5, a convex polygon containing ideal points must have points
〈〈mu〉〉 and 〈〈ml〉〉 as the final points in its upper and lower contours, respectively, where ml ≤ mu

(in this example ml = mu = −0.25). Such a polygon extends infinitely to the right, having lines
with slopes ml and mu as tangents.

4. The N-T Transform

The N-T transform describes how to transform the Thevenin representation of a circuit into its
Norton equivalent, and vice versa. It can thus be viewed as a mapping over points. Operations of
this form have been studied extensively in the field of projective geometry, where they are used to
create a perspective drawing of an image [17].

Define the function τ :P → P as:

1. For Euclidean point 〈x, y〉 with x > 0: τ
(〈x, y〉) .

= 〈1/x, y/x〉.

11

Y
X5.0

5.0

-5.0

1.0

-1.0

Upper Contour

Lower Contour

EUCLIDEAN IDEAL

Figure 5: Contour Representation of a Polygon. When a polygon includes ideal points, the
minimum and maximum points give the slope of the rightmost lower and upper edges.

2. For Euclidean point 〈0, y〉: τ
(〈0, y〉) .

= 〈〈y〉〉.

3. For ideal point 〈〈m〉〉: τ
(〈〈m〉〉) .

= 〈0, m〉.

This transform is defined according to the usual rules for converting between Thevenin and Norton
representations of a circuit. For a Thevenin circuit with positive resistance Rthev, we know that the
Norton equivalent has Gnort = 1/Rthev and Inort = Vthev/Rthev. For Thevenin resistance 0, we use
an ideal point to represent the Norton equivalent of a voltage source. The ideal point representing
the Thevenin equivalent of a current source transforms into a Norton circuit containing the current
source and having Gnort = 0.

From these definitions, we observe a number of important properties. First, τ is a bijection and is
its own inverse, i.e., τ (τ (p)) = p. Second, τ preserves vertical alignment and vertical ordering, i.e,
p < V q iff τ (p) < V τ (q). Third, τ inverts left to right ordering, i.e., p ≺ H q iff τ (q) ≺ H τ (p).
Finally, point p is between points pa and pb, if and only if point τ (p) is between points τ (pa) and
τ (pb).

4.1. Transforms of Lines and Segments

Proposition 1 For any line λ, its transform τ (λ) is itself a line as follows:

1. An angled line is transformed into an angled line, swapping the slope and Y -intercept:
τ (λ A (m, b)) = λ A (b, m).

2. A vertical line with x > 0 is transformed into a vertical line: τ (λ V (x)) = λ V
(
1/x

)
.

12

3. The vertical line with x = 0 is transformed into the ideal line: τ (λ V (0)) = λ∞.

4. The ideal line is transformed to the vertical line with x = 0: τ (λ∞) = λ V (0).

Proof: For the case of an angled line, observe that for any Euclidean point p = 〈x, mx + b〉 with
x > 0, its transform is given by: τ (p) = 〈1/x, b/x + m〉 = 〈x′, bx′ + m〉, for the substitution
x′ = 1/x, and hence the transformed point lies on the angled line with slope b and Y -intercept m.
Furthermore, as x ranges over all positive real values, we see that x′ also ranges over all positive real
values. Finally, points 〈0, b〉 and 〈〈m〉〉 have as transforms 〈〈b〉〉 and 〈0, m〉, respectively, completing
the mapping to the line λ A (b, m).

The other 3 cases follow directly from the definition of the transform.

The property that the transform of an angled line is itself an angled line can be understood in
electrical terms by the examples of circuits A and A’ in Figure 3. These circuits are equivalent and
each is represented by an angled line in its respective half-plane.

Proposition 2 The transform of a segment [p, q] is given by the segment having τ (p) and τ (q) as
its endpoints.

Proof: Having shown that the transform of a line is itself a line, we know that τ (λ (p, q)) =
λ (τ (p) , τ (q)). From this we can conclude that τ ([p, q]) ⊆ λ (τ (p) , τ (q)). Furthermore, a point
is between points p and q if and only if its transform is between points τ (p) and τ (q). From this
we can conclude that τ ([p, q]) = [τ (p) , τ (q)].

For a segment σ, we will denote its transform as τ (σ), bearing in mind that τ (σ) is itself a segment
having as endpoints the transformed endpoints of σ.

4.2. Transforms of Sets and Polygons

Many properties of sets are preserved under the transform operator. Note also that in order to prove
a statement of the form “Property P holds for a set S if and only if P holds for the set τ (S),” it
suffices to give the proof in one direction. For example, suppose we prove the statement “If P
holds for S then P holds for τ (S).” Then the converse follows by substituting τ (S) for S in the
antecedent, and τ (τ (S)) = S for τ (S) in the consequent.

Lemma 1 Set S is convex if and only if τ (S) is convex.

Proof: We will prove the “if” direction, i.e., that if τ (S) is convex then S is convex.

Suppose that set τ (S) is convex. For any points p and q in S, their transforms, τ (p) and τ (q) are
in τ (S), and hence by convexity, any point in the segment [τ (p) , τ (q)] is also in τ (S). We know
that this segment is the transform of the segment [p, q], and hence any point in the segment [p, q]
is in S.

13

Lemma 2 Sequence P = p1, p2, . . . , pk is a reduced point sequence if and only if sequence τ (P) .
=

τ (pk) , τ (pk−1) , . . . , τ (p1) is a reduced point sequence.

Proof: We will prove the “only if” direction. Clearly, τ (P) is a point sequence, since the transform
operator maintains vertical alignment and reverses left to right ordering. Furthermore, if successive
elements of P are distinct, then their transforms are also distinct. We can see that no three successive
points in τ (P) can be colinear, because otherwise the corresponding elements in P would also be
colinear.

Lemma 3 τ (B (P)) = B (τ (P)), for any point sequence P .

Proof: This follows by the definition of B (P) and the fact that the transform operator applies to
segments.

Lemma 4 If C is an upper (respectively, lower) contour for S, then τ (C) is an upper (resp., lower)
contour for τ (S).

Proof: We have just shown that τ (B (C)) = B (τ (C)), and hence every point in B (τ (C)) is in
τ (S). Furthermore, the transform operator preserves vertical alignment and vertical ordering, and
hence if point p is on or below (resp., above) C, then τ (p) is on or below (resp., above) τ (C).

Theorem 1 S is a convex polygon of degree k if and only if τ (S) is also a convex polygon of degree
k.

Proof: Given that S is a convex set with upper and lower contours U and L, we can see that τ (S)
is a convex set having upper and lower contours τ (U) and τ (L).

Given a representation of a convex polygon in terms of its upper and lower contours, we can easily
compute the transform of this polygon. The upper and lower contours of the new polygon are
computed by simply applying the transform operator to each element in the original contours,
while reversing the ordering of elements in the two sequences.

5. Point Addition

Point addition describes the effect of combining networks in series (given their Thevenin represen-
tations) and in parallel (given their Norton representations).

For points p and q their sum, denoted p + q is defined as:

1. For Euclidean points p = 〈xp, yp〉 and q = 〈xq, yq〉: p + q
.
= 〈xp + xq, yp + yq〉.

14

pa

qa

pb

qb

pa + pb

qa + qb

σa

σb

σa + σb

Figure 6: Preservation of Convexity by Minkowski Sum. The segment connecting the sums
of pairs of points from the arguments must lie within the parallelogram formed by summing the
segments connecting the argument points.

2. For Euclidean point p and ideal point q: p + q = q + p = q.

3. For ideal point p: p + p = p.

4. For distinct ideal points p and q: p + q is undefined.

This definition follows from the rules for combining networks in series or in parallel. For points in
the Thevenin half-plane, adding Euclidean points corresponds to the rule that voltage sources and
resistances combine in series by their sums. Adding a Euclidean point to an ideal point corresponds
to case where a current source is placed in series with a voltage source and a resistor, forcing the
branch current to be that of the current source. Adding two ideal points corresponds to placing two
current sources in series. This is allowed only for identical current sources.

For points in the Norton half-plane, adding Euclidean points corresponds to rule that current
sources and conductances combine in parallel by their sums. Adding a Euclidean point to an
ideal point corresponds to case where a voltage source is placed in parallel with a current source
and a conductance, forcing the branch voltage to be that of the voltage source. Adding two ideal
points corresponds to placing two voltage sources in parallel. This is allowed only for identical
voltage sources.

5.1. The Minkowski Sum of Convex Polygons

As we generalize from points to convex polygons for representing variable networks, we extend
addition to polygons according to Equation 1, thus describing the effect of combining variable
networks in series or in parallel. That is, we sum point sets Sa and Sb as Sa + Sb

.
= {pa + pb|pa ∈

Sa and pb ∈ Sb}. The operation of summing two point sets in Cartesian geometry is commonly
called the Minkowski sum. It can be shown that the Minkowski sum of two convex sets is itself
convex. [9]. Figure 6 provides the intuition behind this argument. Suppose set S is formed as the
Minkowski sum of convex sets Sa and Sb. Any points p and q in S can be written as p = pa + pb

15

Sa + Sb

pa + pb

Sa

pa

Sb

pb

Figure 7: Addition of Convex Sets. The boundary of the sum can be formed by sweeping around
the arguments with a pair of parallel tangents.

and q = qa + qb, with pa and pb in Sa and with qa and qb in Sb. Given the arguments are convex, we
must have that segments σa = [pa, qa] and σb = [pb, qb] lie within sets Sa and Sb, respectively, and
therefore their sum must lie within S. As the figure shows, the sum of these two segments forms a
parallelogram that includes the segment [p, q], and hence this segment must lie within set S.

With our inclusion of ideal points, the sum operation is partial, i.e, it is not defined when the two
argument sets contain distinct ideal points. For the cases where it is defined, however, the same
reasoning can be used to show that the sum of two convex sets is convex.

The following method can be used to compute the Minkowski sum of two convex sets in Cartesian
geometry [10]. Define a boundary point p of a convex set S as one such that there is some segment
containing p that intersects S only at p. Every other point of S is an interior point. For every point
p on the boundary of a convex set S, there is at least one line tangent to S at p, i.e., a line whose
intersection with S includes p, and possibly other boundary points, but no interior points. A key
property of the sum of two convex sets Sa and Sb, illustrated in Figure 7, is that for any point p on
the boundary of Sa + Sb, there are boundary points pa and pb in Sa and Sb, respectively, such that
p = pa + pb. Furthermore, if there is a line of slope m tangent to Sa + Sb at p, then the points pa

and pb can be chosen such that there are lines of slope m tangent to Sa and Sb at points pa and pb,
respectively. Thus the boundary for Sa + Sb can be computed by sweeping a pair of tangent lines
clockwise around the two arguments in parallel. For each pair of points pa and pb encountered we
include pa + pb as a boundary point in the sum.

When the two arguments are polygons, the method becomes even simpler, as illustrated in Figure
8. We need only consider tangents having slopes corresponding to the edge slopes, and we can
emit an entire edge of the result at a time. From this we can see that the Minkowski sum of two
convex polygons of degree ka and kb must itself be a convex polygon of degree less than or equal
to ka + kb.

When the argument polygons contain ideal points, the key property described above still holds,
and hence the same basic method can be used to compute their sum. Of course, we must take care
to deal with the fact that the sum of two polygons may be undefined. Furthermore, we must deal
with the degeneracy of addition by an ideal point—it maps any set of Euclidean points into a single

16

Sa

σa

Sb

pb

Sa + Sb

σa + pb

Figure 8: Addition of Convex Polygons. Only tangents corresponding to the argument edge slopes
need be considered.

point.

5.2. Offset Representation of Point Sequences

We will present a version of the polygon summation algorithm that works for polygons represented
by upper and lower contours and possibly containing ideal points. In our algorithm, the upper
and lower contours of the sum are computed from the upper and lower contours of the operands.
A contour is viewed as a series of segments connected at their endpoints. The set of segments
forming the upper (respectively, lower) contour of the sum is generated by merging the sets from
the arguments in a particular order. This process is more readily described by considering each
segment to have an orientation and a length, but viewing the endpoints as being translated freely.
Consider points p and q such that p
 H q. Define their difference, denoted q − p as:

1. For Euclidean points p = 〈xp, yp〉, and q = 〈xq, yq〉: q − p
.
= 〈xq − xp, yq − yp〉.

2. For Euclidean point p and ideal point q: q − p
.
= q.

3. For ideal point p: p − p
.
= 〈0, 0〉.

4. For distinct ideal points, their difference is undefined.

Observe that (q−p)+p = q, and that two segments [p1, q1] and [p2, q2] having the same orientation
and length will have q1 − p1 = q2 − p2. Thus the difference operation provides a means of
“normalizing” line segments with respect to translation. We will consider a point p such that
〈0, 0〉 ≺ H p as representing the normalized segment

[〈0, 0〉 , p
]
, and consequently define its slope

µ (p) as the slope of the line λ
(〈0, 0〉 , p

)
.

An offset sequence is a series of points p1; δ1, δ2, . . . , δk−1 not containing two distinct ideal points.
Such a sequence defines a point sequence p1, p2, . . . , pk+1, where pi+1 = pi + δi for 1 ≤ i < k.
For the special case of k = 1, both the offset sequence and the resulting point sequence consist
of the single point p1. Observe that we can construct an offset sequence corresponding to a point

17

sequence by letting δi
.
= pi+1 − pi for 1 ≤ i < k. Thus, we will view an offset sequence as an

alternative representation of a point sequence.

An offset sequence defines a reduced point sequence if and only if the following properties hold:

1. There are no elements of the form δi = 〈0, 0〉.

2. If point p1 is an ideal point, then k = 1.

3. Point δi is not an ideal point for any i < k − 1.

4. There are no successive points δi−1 and δi such that µ (δi−1) = µ (δi).

Observe that an offset sequence can be reduced by eliminating any elements of the form δi = 〈0, 0〉,
by eliminating any elements beyond an ideal point, and by replacing any pair of elements δi−1 and δi

for which µ (δi−1) = µ (δi) by the single element δi−1 + δi. This reduction is equivalent to reducing
the corresponding point sequence.

A reduced point sequence having offset representationp1; δ1, δ2, . . . , δk−1 is said to be convex upward
(respectively, downward), provided µ (δi−1) > µ (δi) (resp., µ (δi−1) < µ (δi)) for all 1 < i < k.
An arbitrary point sequence is convex upward (resp., downward), if its reduction is convex upward
(resp., downward).

5.3. Addition of Polygons

Given two convex polygons Sa and Sb the following algorithm computes the upper and lower
contours of the sum Sa + Sb from the upper and lower contours of Sa and Sb. Suppose that
reduced point sequences A and B are the upper contours for Sa and Sb, respectively. These
contours are convex upward. Let their offset sequence representations be a1; α1, α2, . . . , αka−1, and
b1; β1, β2, . . . , βkb−1, respectively. Their convex upward sum, denoted A

�
+ B is defined as long as

αka−1 and βkb−1 are not distinct ideal points. This sum is the point sequence having offset sequence
representation a1 + b1, δ1, δ2, . . . , δka+kb−2 where the sequence δ1, . . . δka+kb−2 is an interleaving
of the sequences α1, . . . , αka−1 and β1, . . . , βkb−1, such that δi−1 ≥ δi for 1 < i ≤ ka + kb − 2.
In computing this sum, we effectively implement the tangent sweeping method described earlier
for the upper boundary of the sum of two convex polygons. The interleaving of argument edge
segments in decreasing order of slope matches the order edges would be encountered if we started
with vertical lines at the left hand sides of the arguments and swept clockwise until the tangents
were vertical lines on the right hand sides of the arguments. Thus A

�
+ B forms the upper contour

for Sa + Sb.

Figure 9 illustrates the process of adding two contours. The upper part of the figure shows the
argument contours CA and CB, as well as their sum CA

�
+ CB following its reduction. The lower

shows how this reduced sum is computed. First, the two argument contours are converted into
segment lists in descending-slope order. Next, these segments are merged into a single list. This
list represents the contour CA

�
+ Cb. We can compute a reduced sum by simply merging any

segments having equal slope (e.g., the case labeled “merge”) and by eliminating any segments
beyond the first ideal point (e.g., the case labeled “eliminate”).

18

EUCLIDEAN IDEAL

Y
X12.0

5.0

-5.0

1.0

-1.0

CA

CB

CA+CB

)

CA

CB

eliminate
merge

CA+CB

)

Figure 9: Illustration of Contour Addition. Upper contours are summed by merging their
segments in descending-slope order

19

For convex downward point sequences A and B, their convex downward sum, denoted A
�
+ B, is

defined under the same conditions and in the same fashion, but with the offset elements ordered
δi−1 ≤ δi. Clearly, A

�
+ B is convex downward. If A and B are lower contours for convex sets Sa

and Sb such that Sa + Sb is defined, then A
�
+ B is the lower contour for Sa + Sb. Observe that

computing this sum implements the tangent sweeping for the lower boundary, where the tangents
start at the left hand sides and sweep counterclockwise to the right hand sides.

These results yield an efficient algorithm for computing the sum of a convex polygon having upper
and lower contours Ua and La with a convex polygon having upper and lower contours Ub and Lb.
First, we determine if the sum is defined, by comparing the final elements of contours Ua and Lb

as well as those of contours La and Ub. If either of these pairs consist of distinct ideal points, then
the sum is not defined.2 Otherwise, compute the upper contour as the reduction of Ua

�
+ Ub, and

the lower contour as the reduction of La

�
+ Lb. For argument polygons of degrees ka and kb, this

algorithm has complexity O(ka + kb), and the resulting polygon has degree less than or equal to
ka + kb.

6. Network Analysis

Now that we have developed methods to characterize Thevenin and Norton equivalents, we can
return our attention to the task of analyzing the extreme operating conditions of a circuit.

6.1. Single Node Analysis

Our algorithms for the geometric transform and polygon addition operations form the basis of a
network analysis technique for series-parallel networks. This technique is illustrated for the circuit
of Figure 10 to characterize the range of possible behaviors at node D with respect to ground.
First, we must decompose the circuit into a series-parallel structure with one terminal being the
node of interest, and the other being ground, as shown in the lower part of the figure. In this
decomposition, the intermediate subnetworks are referred to as N1 through N7. Based on this
series-parallel decomposition, we derive the Thevenin and Norton polygons by a sequence of
geometric operations, as illustrated in Figure 11. Note that in this figure, the polygons labeled Ni

and Ti show the Norton and Thevenin representations for subnetwork Ni. Observe that at each
step we convert to a Thevenin representation for combining subnetworks in series and to a Norton
representation for combining subnetworks in parallel.

Assume the circuit contains a total of n elements, of which k are variable. The k variable elements
are represented by polygons of degree 2, while the fixed elements are represented by single points.
Each time two polygons are summed, the resulting polygon has degree less than or equal to the
sum of the argument degrees. For the special case where one of the arguments is a single point,
the resulting polygon has degree less than or equal to the degree of the other argument. The N-T
transform operator produces a polygon with the same degree as its argument. Thus, the polygon
describing the entire network has degree at most 2k. In the circuit of Figure 10, for example, the

2Note that just these two comparisons are sufficient—we can detect whether the right hand boundaries contain
distinct ideal points by comparing the maximum of one with the minimum of the other, and vice-versa.

20

+
-

+
-

↑
A

B

C

D

E

0.4 ≤ R 1 ≤ 2.0

V 1 = +2.0

1.0 ≤ I 1 ≤ 1.5

V 2 = –3.0

0.5 ≤ R 2 ≤ 5.0

2.0 ≤ R 3 ≤ 3.0 2.5 ≤ R 4 ≤ 3.5

+
-

+
-

↑
R 1

V 1

I 1 V 2

R 2

R 3

D

N1

N2

N3

N4
N5

N6

N7

Figure 10: Circuit and its Series-Parallel Decomposition. This decomposition characterizes the
circuit at D with respect to ground.

21

T 1

T 3

T 5

T 6

N 1

N 3

N 5

N 6

N 7

N 2

T 4

T 7

Figure 11: Derivation of Thevenin and Norton Representations for Example Circuit. The
derivation follows the series-parallel decomposition.

final result is a pair (Thevenin and Norton) of polygons of degree 6, slightly less than the maximum
degree of 8 achievable for a circuit with 4 variable elements.

The series-parallel decomposition of an n-element circuit can be represented as a tree with n
leaves (corresponding to the elements), n− 1 internal nodes (each representing a series or parallel
combination), and 2(n − 1) edges. To construct the Norton or Thevenin representation of such a
network requires at most n−1 addition operations (one per internal tree node), and 2n−1 transform
operations (one per edge, plus one at the root). For a network with k variable elements, no polygon
has more than 2k vertices, and hence each polygon operation has time complexity O(k). Therefore,
the worst case complexity of analyzing such a circuit is O(nk), which in turn is at worst O(n2).

6.2. Grounded Tree Networks

In potential applications of this analysis, we may wish to characterize the range of behaviors for
multiple circuit nodes. One approach would be to derive a series-parallel decomposition for every
node with respect to ground and analyze each such case separately. This approach would have
worst case complexity O(n2k) to analyze all nodes in a network with n elements of which k are
variable. On closer inspection one finds that much of this complexity is due to repeated analysis of
the subnetworks.

For the special case of “grounded tree” networks, we can exploit the circuit structure to analyze the
circuits for all nodes in time O(nk). This class of networks obeys the following restriction: the
circuit graph becomes acyclic when all branches connected to ground are eliminated. By selecting
an arbitrary node as root, such a circuit can be drawn as a tree, where the ground node is replicated
for each connected branch. Figure 12 illustrates the tree structure for the example circuit shown in
Figure 10. This class of circuits also has the property that for every node in the circuit there is a

22

+
-

+
-

V 2

R 2 R 4

C E

↑
R 1

V 1

I 1

R 3

D

B

A

Figure 12: Representation of Example Circuit as a Grounded Tree. By replicating the ground
node, the circuit attains a tree structure.

23

+
-

+
-

↑
R 1

V 1

I 1

V 2

R 2

R 3

D

R 4

B

A C E

R = 0

R
 =

 ∞

R
 =

 ∞

R
 =

 ∞

R
 =

 ∞

Figure 13: Transformation of Circuit into Binary Tree. High degree nodes are split and connected
by perfect conductors, while low degree nodes are connected to ground by insulators.

24

series-parallel decomposition for the node with respect to ground.

In developing an algorithm for grounded-tree circuits, we can make simplifying assumptions about
the tree representation of the circuit. These assumptions simplify the presentation without affecting
the asymptotic complexity of the algorithm. In particular, we can assume that every node except
ground has exactly two children, which we will denote as LeftChild and RightChild. Such a tree
corresponds to a circuit in which the root node Root has exactly two branches while all others have
three. We can transform the circuit into such a representation by splitting any nodes of higher
degree into multiple nodes connected by resistors with resistance 0. In addition, any nodes of lower
degree can be augmented with branches to ground having infinite resistance. Figure 13 illustrates
the binary representation of our example circuit. Assuming the original circuit had n elements, it
can be seen that splitting the high degree nodes will involve adding at most n − 1 resistors, while
expanding the low degree nodes will involve adding at most 2n resistors.3 Hence, both the number
of branches and the number of nodes in the transformed circuit will be O(n).

Figure 14 shows pseudo-code (following the stylistic conventions of [15]) for the grounded tree
analysis algorithm. This code computes the Thevenin representation for every node N with respect to
ground and stores the result as Thev(N). Alternatively, a similar technique could be used to compute
the Norton representations. The code expresses the algorithm in terms of a data type thevPoly,
with operations + and ||. The + operation denotes polygon addition and hence computes the
series combination of Thevenin circuits. The || operation is defined for polygons P1 and P2 as
P1 ||P2

.
= τ (τ (P1) + τ (P2)) and hence computes the parallel combination of Thevenin circuits.

The thevPoly representations of a short and an open circuit are given as {〈0, 0〉} and {〈〈0〉〉},
respectively.

The code assumes that the Thevenin representation of each circuit element has been computed
and stored as TLeftBranch(N) or TRightBranch(N), according to whether the element connects
N to its left or its right child. The algorithm operates by traversing the circuit tree twice by
recursive routines ScanSubtrees and CombineUpDown. During the first traversal it computes the
Thevenin representations of every subtree in the circuit. For node N, it stores intermediate results
ThevLeft(N) and ThevRight(N), giving the Thevenin representation of each of its subtree in series
with the connecting element. It returns the parallel combination of these two intermediate values
as the Thevenin representation of the entire subtree. During the second traversal, it combines
these intermediate results with the Thevenin representation of the rest of the circuit, passed as
the parameter ThevDown to compute the final value for node N. It then continues the traversal
by recursively calling the procedure for its two children. When making each call it computes the
Thevenin representation for the rest of the circuit with respect to each child.

Observe that, with the exception of ground, a given node N is “visited” by each of the recursive
routines exactly once. Each such visit involves only a constant number of polygon operations.
Hence, the overall complexity of the algorithm is O(nk) for a network with n elements of which k
are variable.

Figure 15 shows the Thevenin and Norton representations of all nodes in the example circuit,
computed by the grounded tree analysis algorithm. Observe that the Thevenin representations

3An example of a network that approaches this worst case would be a “star” consisting of n − 1 “leaf” nodes with
branches to a single “root” node. Splitting the root would require adding n − 2 branches, while expanding the leaves
would require adding 2 branches each.

25

procedure TreeAnalysis(node Root):
{ Store Thevenin representation of every node in grounded tree circuit. }

ScanSubtrees(Root)
CombineUpDown(Root, {〈〈0〉〉})

function ScanSubtrees(node N): thevPoly
{ Return Thevenin representation of circuit formed by subtree with root N.

Store representations of left and right subtrees for later use. }
if N is ground then return {〈0, 0〉}
else

ThevLeft(N) ← TLeftBranch(N) + ScanSubtrees(LeftChild(N))
ThevRight(N) ← TRightBranch(N) + ScanSubtrees(RightChild(N))
return ThevLeft(N) || ThevRight(N)

procedure CombineUpDown(node N, thevPoly ThevDown)
{ Store Thevenin representation for every node in subtree with root N.

Argument ThevDown gives Thevenin representation of everything but subtree. }
if N is ground then Thev(N) ← {〈0, 0〉}
else

Thev(N) ← ThevDown || ThevLeft(N) || ThevRight(N)
ThevDownLeft ← TLeftBranch(N) + (ThevDown || ThevRight(N))
CombineUpDown(LeftChild(N), ThevDownLeft)
ThevDownRight ← TRightBranch(N) + (ThevDown || ThevLeft(N))
CombineUpDown(RightChild(N), ThevDownRight)

Figure 14: Analysis of Grounded Tree. The algorithm computes the Thevenin representation for
each node with respect to ground.

26

V
R

2 .0

-2 .0

4 .0

-4 .0

2.0 4 .0 6.0

A

B

C

D E

EUCLIDEAN IDEAL

I
G

3 .0

-3 .0

-6 .0

1.0 2 .0 3.0

AB

C

D

E

EUCLIDEAN IDEAL

Thevenin Representation Norton Representation

Figure 15: Thevenin and Norton Representations of All Nodes in Example Circuit. By ex-
ploiting the tree structure, all of these representations can be computed in 2 passes of the network.

for the different nodes differ markedly. Two—nodes A and C are determined completely by the
connected voltage sources. Nodes D and E have similar forms—the Thevenin representation at E is
simply the result of adding series resistance R4 to that of node D. Since R4 is variable, the polygon
is both translated left and extended horizontally. Finally, the polygons for nodes D and B bear little
resemblance to each other. In fact, the settings that minimize or maximize the Thevenin voltage
are quite different. This example shows how our algorithm can efficiently characterize the range
of possible operating conditions for every node in the circuit.

7. Conclusions

By characterizing the range of circuit behaviors in a geometric form, we have shown that a seemingly
difficult optimization problem can be solved by a simple and efficient algorithm. Furthermore,
for an interesting class of circuits we can efficiently compute the behavior for all circuit nodes
simultaneously.

As mentioned earlier, the general problem of computing the maximum or minimum node voltages
in a circuit is NP-complete. One naturally asks how our solution technique breaks down for circuits
that are not series-parallel. It can be shown by network tearing [16] that the effect of varying
any single element in a linear circuit traces out a straight line segment in the Thevenin or Norton
half-planes. Thus, the range of all possible operating points must still be a polygon. However, the
polygon can potentially be concave. Figure 16 shows an example of a circuit having a concave
polygon for its Thevenin representation. Furthermore, there is no simple way to express the network
analysis task as a series of geometric operations. Perhaps the most promising avenue of research is
to find an algorithm that approximates the range of behaviors for an arbitrary circuit by a polygon
that forms a superset of the actual set of realizable values.

27

+−

R = 1 R = 1

V = 1

R = 1

0 ≤ R 1 ≤ ∞

0 ≤ R 2 ≤ ∞

V
R

2.0

0.5

-0.5

EUCLIDEAN IDEAL

Figure 16: Non Series-Parallel Circuit Example. The Thevenin representation is still a polygon,
but it may be concave
.

References

[1] R. J. Bumcroft, Modern Projective Geometry, Holt, Rinehart, and Winston, 1969.

[2] D. A. Calahan, Computer-Aided Network Design, Section 7.3.3. McGraw Hill, 1972.

[3] C.-Y. Chu, “Improved Models for Switch-Level Simulation,” PhD Thesis, Stanford Dept. of
EE, 1988.

[4] T. W. Davis, and R. W. Palmer, Computer-Aided Analysis of Electrical Networks, Merrill,
1973.

[5] C. A. Desoer and E. S. Kuh, Basic Circuit Theory, McGraw-Hill, 1969.

[6] S. W. Director and R. A. Rohrer, “The Generalized Adjoint Network and Network Sensitivi-
ties,” IEEE Transactions on Circuit Theory, 16(3), Aug., 1969, pp. 317–323.

[7] S. W. Director, Circuit Theory: A Computational Approach, John Wiley & Sons, 1975.

[8] M. R. Garey, and D. S. Johnson, Computers and Intractability, W. H. Freeman and Company,
1979.

[9] B. Grünbaum, Convex Polytopes, Interscience, 1967.

[10] L. Guibas, L. Ramshaw, and J. Stolfi, “A Kinetic Framework for Computational Geometry,”
Symposium on Foundations of Computer Science, IEEE, 1983, pp. 100–111.

28

[11] I. N. Hajj, “Algorithms for Solution Updating Due to Large Changes in System Parameters,”
International Journal of Circuit Theory and Applications, 9(1), Jan., 1981, pp. 1–14.

[12] L. P. Huang, “Modeling Uncertainty in Linear Switch-Level Simulation,” PhD Thesis,
Carnegie Mellon University Dept. of Electrical and Computer Engineering, 1991.

[13] L. P. Huang, and R. E. Bryant, “Intractability and Switch-Level Simulation,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 12 (6), June, 1993,
pp. 829–836.

[14] K. H. Leung, and R. Spence, “Multiparameter Large-Change Sensitivity Analysis and Sys-
tematic Exploration,” IEEE Transactions on Circuits and Systems, CAS-22(10), Oct., 1975,
pp. 796–804.

[15] H. R. Lewis, and L. Denenberg, Data Structures and their Algorithms, HarperCollins, 1991.

[16] R. A. Rohrer, “Circuit Partitioning Simplified,” IEEE Transactions on Circuits and Systems,
CAS-35(1), Jan., 1988, pp. 2–5.

[17] W. F. Taylor, The Geometry of Computer Graphics, Chapter 4, Wadsworth and Brooks/Cole,
1992.

[18] C. J. Terman, “Simulation Tools for Digital LSI Design,” PhD Thesis, MIT Dept. of Electrical
Engineering and Computer Science, 1983.

[19] C. A. Zukowski, The Bounding Approach to VLSI Circuit Simulation, Kluwer, 1986.

29

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

