
An Integrated Toolkit for

Operating System Security

Michael O. Rabin and J. D. Tygar1

Aiken Computation Laboratory

Harvard University

Cambridge, MA 02138

August 1988

1The second author’s current address is Computer Science Department, Carnegie-

Mellon University, Pittsburgh, PA 15213. This research was supported in part under

NSF research grant DCR-81-21431 at Harvard University. The second author received

additional support from graduate fellowships from IBM and NSF.

Harvard University Aiken Computation Laboratory technical report TR-05-87R

Contents

1 Introduction 3

2 Pure Access Control 12

2.1 Privileges and Protections . 12

2.2 The Tree of Securons . 14

2.3 Security Expressions . 17

2.4 An Algorithm for Testing V ⇒ T 20

2.5 Negative Privileges and Protections 21

2.6 Indelible Protections and Confinement 23

2.7 Bypass Privileges . 28

2.8 Gradation of Actions on Files . 29

3 Sentinels 32

3.1 Overview . 32

3.2 Semantics of Sentinels . 34

3.3 Types of Sentinels . 36

3.4 Examples . 38

3.5 Previous Work . 39

4 Incarnations and Secure Committees 41

4.1 Overview . 41

4.2 Incarnations . 44

1

4.3 Secure Committees . 46

5 Fences 48

5.1 Validation . 48

5.2 Fingerprints . 49

5.3 System Call Fingerprints . 50

6 Bibliography 52

2

Chapter 1

Introduction

Public and private organizations maintain large systems of files to be accessed by

many users. Clearly, access to information in these files must be regulated so that

specific items are made available to specific users, in accordance with rules and

limitations deemed appropriate by management. The totality of these rules and

limitations constitute the (information) security policy of the organization.

Nowadays such systems of files reside within computer systems, usually on

secondary memory devices such as magnetic or optical disks or magnetic tapes.

The files are accessed through computers, on terminals or printers, in a time-

shared mode on a single computer, or in a distributed system of computers and

file servers linked together. Computer systems are governed by operating systems

which, among other tasks, implement and regulate the total user interaction with

the system, including user access to the file system. Any hostile impingement on

the integrity of the operating system poses grave dangers to the security of the file

system, as well as to the proper intended behavior of the computer. Thus secu-

rity requirements include the protection of operating systems from unauthorized

incursion and subversion.

We feel that a method or model for implementing secure operating systems

should posses the following attributes:

3

1. It should include mechanisms allowing the transaltion of any desired well

specified security policy into the behavior of the given operating system.

2. It should provide software support and tools for facilitating the above process

of translation.

3. It should ensure the proper intended behavior of the system even under ma-

licious attacks.

4. Finally, despite its vital importance, computer security must be achieved at

just a modest cost of system performance degradation.

Our approach to the problems of computer security, while bringing to bear some

sophisticated algorithms, is at the same time pragmatic. We do not axiomatize

the notions and mechanisms of security. Neither do we propose to conclusively

demonstrate that a large software system possess certain security properties by

carrying out formal verification. In fact, there are solid scientific reasons to believe

that such global verification is not possible, and in practice formally verified secure

system kernels have been found to have serious weaknesses [Benzel 84], [DeMillo-

Lipton-Perlis 79], [Jelen 85], [McLean 85], [McLean 86], [Thompson 84].

What we rather do is to prepare a list of desired and essential properties that

a computer system should possess so that a security policy can be reliably and

conveniently implemented by users. The issue of security is viewed as that of

controlling the access of users to files and of protecting the integrity of the operating

system. This is effected through a series of new concepts, mechanisms, calculi, and

software support constructs. Taken together these tools (the word is used in the

colloquial sense rather than as in “software tools”) comprise the ITOSS (Integrated

Toolkit for Operating System Security) model for computer security. This model is

general in scope and applicability and was also implemented in detail for the UNIX

BSD 4.2 operating system.

4

Users act in the system through computing processes which make system calls

requesting access to files. In our system, processes P have privileges V , and files

F have protections T . We develop a formal calculus for representing privileges and

protections by security expressions, and a semantics for the interpretation of such

expressions as having values which are certain set constructs. We define the relation

of a privilege V satisfying a protection T (V ⇒ T). By stipulation, a process P
with privileges V will be allowed to access a file F with protection T if V ⇒ T .

An efficient algorithm is developed for determining, for given expressions V and T ,

whether V ⇒ T .

Our treatment of privileges and protections includes non-monotone privileges, a

construct of indelible protections; and a mechanism for enforcing confinement (see

[DOD 85], [Lampson 73]).

The next tool of ITOSS is that of incarnations. From an organizational point

of view, the significant entity is not the individual user as a person but the role,

such as department head or bank teller, in which he interacts with the computer

system. We therefore enable the organization to dynamically specify a set of entities

I1, I2, . . . called incarnations, where each Ii is endowed with the privilege Vi deemed

appropriate for the organizational role that Ii represents. The privilege Vi is passed

to the processes created on behalf of Ii. A particular user (person) U will have

specific incarnations I, I ′, . . . , associated with him. When U logs in he chooses

the incarnation representing the role in which he intends to interact with the file

system. By use of windows, he can simultaneously interact in several roles, without

danger of security tresspasses.

The incarnations mechanism has several benefits. It allows precise tailoring of

access privileges to needs of the work to be done by a user in a computer session.

Access privileges can be specified according to work roles and can be effortlessly

shifted around by system managers simply by removing or adding incarnations to

a user.

5

Up to now we have described passive protection mechanisms. A sentinel S

is a pointer to an executable file (program), call it FS. The sentinel S may be

incorporated as part of the protection header of a file F . The code in FS, and the

decision whether to protect a particular file F by S, are made by system managers.

The operating system includes code which, upon a system call to open a file F ,

scans the header of F and creates sentinel processes S1,S2, . . . , where Si runs the

code FSi
, corresponding to the sentinels S1, S2, . . . , listed in the header. Actually,

the sentinels appear in the header in sentinel clauses of the form C → S, where C

is a triggering condition. The operating system tests C and invokes S as a process

if and only if C is true.

Sentinels have many security and system applications. For example, we may

write an audit program FSaudit
which will record details of accesses to file F in a

file F̄ . For a sensitive file F , one may include the sentinel Saudit in the protection.

When such a file F is opened, the sentinel Saudit is invoked. The system passes to

Saudit certain parameters which may include the file name of F , an identifier of the

process P which made the call to open F , the name of the file F̄ into which the

access to F by P will be recorded, etc.

It is important to emphasize that, as a rule, the decision to have any particular

sentinel S, the code of FS, the list parameters to be passed to S, and the decision

as to which file F will be protected by a clause C → S (and with which C), are all

made by the system management. ITOSS provides the general sentinel mechanism

as a tool which may then be employed by management for any purposes deemed

useful.

In every computer installation there is a group of users, the system programmers,

each of whom necessarily possesses extensive access privileges. Thus for UNIX,

system programmers have “root”, i.e. total, privileges. This poses very serious

security threats. In ITOSS we have the secure committee tool. This mechanism

allows management, if they so desire, to subject an incarnation Icomm to a committee

6

of n users U1, . . . ,Un (more accurately, n incarnations I1, . . . , In of these users), a

quorum of q of whom are required to invoke and later control Icomm.

Secure committees with any specified privileges are created by system manage-

ment according to need, and the system can support any number of such commit-

tees. We shall explain later how to initiate this process so as to ensure security

from the start. Secure committees have additional security applications beyond

“watching the guards”.

Additional security tools of ITOSS are fences. These include a method of “fin-

gerprinting” system calls and files, and comparing fingerprints at appropriate points

during the progress of the computation. A discrepancy between a pair of fin-

gerprints which ought to be the same is an indication that some inadvertent or

maliciously induced departure from the intended course of the computation has oc-

curred. Fences are incorporated as modules into the kernel and run as part of the

kernel code. They serve as a second line of defense against possible security weak-

nesses. Since it is possible to incorporate flexible variants of fences into operating

system kernels after their completion, there is a good chance that consequences of

any security error in a given kernel will be blocked at runtime by the fence.

In our implementation of ITOSS in conjunction with UNIX 4.2, we introduced

fingerprinting at the top level of system calls, and again at the device driver level.

This fence uncovered a hitherto unknown security breach arising from a possible

race between link() and chmod() calls referring to a file. Even if the original code

were left uncorrected, the unintended change of protection would be consistently

blocked by the fence, and the attempted, unauthorized change of protetction of a

file would be brought to our attention whenever arising during run time.

A centrally important feature of ITOSS is that when incorporated into an op-

erating system it provides for more than just one option of a security policy. The

tools of ITOSS allow the specification and implementation of a wide variety of

organizational security policies.

7

Current proposals for high-security operating systems entail a serious degrada-

tion of system performance as a price for enhanced security. An important focus

of our work is this issue of efficiency. The overall approach adopted by us, coupled

with carefully chosen data structures and very fast algorithms for the frequently

repeated security functions, results in a highly efficient system. In tests comparing

our system with pure UNIX 4.2, we found no more than a 10% degradation of

performance resulting from incorporating ITOSS.

Altogether, we feel that the tools developed in this work lead to the following

security advantages:

1. ITOSS provides user-privilege and file-protection structures rich and fine-

grained enough to faithfully express and implement any desired security pol-

icy. Furthermore, our formalism allows convenient and succinct expression of

privileges and protections.

2. The coarseness of privilege/protection structures in existing security systems

forces system designers, in certain instances, to confer excessive privileges of

access on user and computing processes. These excessive privileges may then

be employed by users and processes to subvert file and system security. The

rich structure of privileges and protections of ITOSS, coupled with the tool of

incarnations, allows tailoring of user and process privileges to the exact access

requirements of the tasks to be performed. This circumvents many possible

security pitfalls and dangers.

3. Sentinels provide convenient and reliable mechanisms for guarding against

inadvertent or malicious failures of a user to follow security procedures, and

for monitoring, auditing, and controlling access to sensitive files.

4. We provide system defenses against so-called “Trojan Horses” in applica-

tion programs. These “Trojan Horses” are programs submitted by an un-

scrupulous party for general use within the system, and containing code which

8

when run by an unsuspecting user will illegally read, modify, or destroy his

files. These defenses may be effected through the use of incarnations, fences,

sentinels, non-monotonic protections, indelible protections and other ITOSS

mechanisms.

5. Fences provide a “second line of defense”, i.e. measures for detecting unau-

thorized changes of files and attempts to perform illegal accesses to files,

reporting on the former and preventing the latter.

6. In existing computer systems there are always individual users, such as system

programmers, with total access privileges. No system safeguards are provided

against such pivotal individuals, should they wish to subvert the system’s

security. The mechanism of secure committees solves this problem.

7. The overhead cost in performance degradation resulting from running ITOSS

is small (less than 10% slowdown over pure UNIX 4.2 operation.)

8. By implementing suitable changes, ITOSS can be incorporated into any ex-

isting operating system with a relatively modest programming effort, and will

confer on that system the security protections of ITOSS.

Finally, a word on how ITOSS will be used. This system is intended for instal-

lations and organizations, such as banks, hospitals, corporations, and government

departments, where security of information is an important issue. We envision that

in such organizations, management will formulate a security policy, i.e. define or-

ganizational roles as well as classes of files (depending on security considerations)

and specify, based on work needs, for every role, the set of files that can be accessed

by users acting in that role.

The computer installation will have “security engineers” who are system ana-

lysts and programmers familiar with the tools and provisions of ITOSS, and also

9

with the organization served by the system. These security experts will assist man-

agement in formulating the organization’s security policy.

Actually we expect that with time and experience, security policies typical to

various industries such as banking, retailing, and government, will emerge. Man-

agement of a particular organization will adopt and adapt a standard policy to its

needs, without having to start from scratch.

The security engineers will implement the organization’s security policy. This

will include the creation of classes of privilege and protection expressions; the cre-

ation of incarnations; the assignment of privileges to incarnations and of protections

to files. After proper system initialization, the assignment of protections to newly

created files will as a rule be automated. The reasons for this mode of automatic

assignment of protections to files, and the mechanism for doing it, are detailed in

Chapter 4. Security engineers will decide which sentinel programs to choose from

a standard library, and what new sentinels to create. They will create and install

secure committees for performing extra sensitive tasks.

The day to day maintenance of security will also be in the hands of the security

engineers (acting as a secure committee, if so prescribed by policy). They will

initially introduce users into the system and assign incarnations to those users

according to instructions from management. The security engineers, together with

other system programmers (also acting as a secure committee), will be responsible

for ongoing changes in the operating system, the file system modifications, and the

updating of security features.

The features and mechanisms of ITOSS will be mostly transparent to the ordi-

nary user. The user will be presented, after he logs in using his personal password,

with a menu of the incarnations available to him. These will be stated in everyday

terms such as: “Manager of Loans”, “Member of Committee on Salaries”, “Personal

Matters.” Once the user makes a selection of an incarnation, his access privileges

and the protections for the files that he creates are automatically determined. He

10

is oblivious to the details of privileges and protections, and to the existence of

sentinels which may guard files that he accesses. The flexibility of ITOSS allows

management to depart from the transparent-to-user mode, if so desired. For ex-

ample, security policy may permit a user to set and modify protections, including

sentinels, to his private files which he accesses in the Personal Matters role (incar-

nation) that may be available to him. All such details are questions of policy, and

any kind of policy is implementable in ITOSS.

We feel that this division of labor and responsibilities for security between man-

agement, expert security engineers, and users, coupled with the tools and flexibly

employable protections of ITOSS, will provide usable, reliable, and appropriate

protection for information systems.

NOTE TO MICHAEL: WE NEED TO EXPLAIN INITIALIZATION

11

Chapter 2

Pure Access Control

2.1 Privileges and Protections

From management’s point of view the issue of the security of information can be

expressed as follows: We have a group of users and a dynamically changing body

of information, which for the purposes of this work will be thought of as being

organized in units called files. Management wants to define and enforce a regime

specifying, for every user U and every file F , whether U is allowed to access F .

We view the security problem in the context of an operating system. In this

environment the files reside in some kind of storage. Users have computing processes

acting on their behalf.

Thus the security problem is reduced to being able to specify for every process

P present in the system and every file F whether P will be allowed to access F
and being able to enforce the specified regime. On the most general level, such a

regime can be specified and enforced in one of the following three equivalent ways:

We can create and maintain an access matrix M in which M [i, j] = 1 if and only

if process Pi is allowed access to file Fj. [Lampson 74] Alternatively, each process

Pi may be provided with a capability list Li = (j1, j2, . . .) so that Pi may access

Fj if and only if j appears in Li. The dual to this approach provides each file Fj

12

with an access control list L′
j = (i1, i2, . . .) so that Pi may access Fj if and only if

i appears in L′
j. When a process attempts access to a file, the operating system

checks the access matrix, the capabilities list, or the access control list to see if this

access should be permitted. The dynamically changing nature of the ensembles of

processes and files and the large number of objects involved render such a regime

difficult to specify and to update. Also, large capability lists for processes or long

access control lists for files give rise to storage and runtime inefficiencies.

Our approach is to approximate these most general schemes by associating with

every process P , a list of privileges V called the combined privileges and with every

file F a list of protections T called the combined protections. Access of P to F
is allowed if V satisfies (is sufficient for overcoming) T . We shall do this so as to

satisfy the following criteria:

1. The privilege/protection structure must be sufficiently rich and fine grained

to allow modelling of any access-control requirements arising in actual orga-

nizations and communities of users.

2. A formalism must be available so that users can rapidly and conveniently

specify appropriate privileges for processes and protections for files.

3. There must be a rapid test whether a combined privilege V satisfies a com-

bined protection T .

When thinking about access of a process P to a file F , we actually consider

a number of access modes. For the purpose of this work we concentrate on the

following modes:

1. Read

2. Write

3. Execute (i.e. run as a program)

13

4. Detect (i.e. detect its existence in a directory containing it)

5. Change Protection

This list of modes of accesses can be readily modified or extended to include other

modes, according to need. Of these modes, Read, Execute, and Detect are hence-

forth designated as non-modifying, while Write and Change Protection are hence-

forth designated as modifying.

Both the combined privileges and the combined protection each consist of five

privileges or protections, respectively, one for each of the access modes. Thus a

process P has five privileges (Vrd, Vwr, Vex, Vdt, Vcp) associated with it, where Vrd

is the read privilege, Vwr is the write privilege, etc. Similarly, a file F has five

corresponding protections (Trd, Twr, Tex, Tdt, Tcp) associated with it. When process

P makes a system call to read F , the system will check whether Vrd satisfies Trd

before allowing the access. The other access modes are handled similarly. As we

will see later, the detailed implementation is somewhat more complicated, and an

check of a privilege may involve looking at several components of the protection.

The reason for this complication is to provide for confinement (see section 2.6).

From now on we shall treat just a single privilege/protection pair 〈V, T 〉, which

can stand for any of the pairs 〈Vrd, Trd〉, etc. In fact, 〈V, T 〉 can stand for 〈VX , TX〉,
where X is any additional access mode that an operating system designer may wish

to single out.

As will be seen later, each privilege and protection have a finer detailed struc-

ture. Thus a privilege VX , where X is a mode of access, will have several compo-

nents.

2.2 The Tree of Securons

The basic atomic units out of which all privileges and protections are composed are

nodes, called securons, of a specific tree. Since customers such as government de-

14

partments or corporations, usually have tree-like hierarchical organizational struc-

tures, the tree of securons is a natural domain into which to map the desired security

structure of the organization in question.

Definition 2.2.1 The securon tree of width n and depth h is the set str(n, h) of

all strings 0.i1.i2. · · · .ik where ij ∈ [0 . . n − 1], and 0 ≤ k ≤ h. The root node of

this tree is 0.

If x, y ∈ str(n, h) and 0 ≤ i ≤ n− 1, then y is the ith child of x if y = x.i. The

strings x and y are related if x is an initial sequence of y (denoted by x ≤ y), or if

y ≤ x.

The depth of the securon x = 0.i1. · · · .ik is defined as d(x) = k.

In every particular implementation of ITOSS a specific tree str(n, h) is used.

In the current version of ITOSS, n = 256 and h = 15. We shall henceforth denote

by str the fixed securon tree used in the architecture of our secure system.

As a first approximation we are tempted to use the securons themselves as

privileges and protections. Thus we might assign to a manager the securon x =

0.15.19.7 and to his 15 subordinates the securons 0.15.19.7.i, 0 ≤ i ≤ 14. If a

subordinate created a file F , then his securon y would be attached as the protection

T = y of this file. A process P owned by the manager would have the privilege

V = x. We could then stipulate that when the process (P , V) tries to access the file

(F , T), permission would be granted only if x ≤ y (x is an initial sequence of y).

We feel that such arrangements, and their obvious extensions and modifications,

are not powerful and rich enough in complexity to reflect the security structure

we need. However, in many existing systems the security structure is even more

limited than in the above arrangement. We want to have much more sophisticated

objects for expressing privileges and protections and a more flexible definition for

the notion of a privilege satisfying a protection.

In particular, our security system will constrained layered constructs. The high-

est level structures are lists called called the combined privileges (combined protec-

15

tions). These have elements wheich are termed privileges (protections) which in

turn consist of privilege (protection) components. Later we will refer to further

subdivisions of the privilege (protection) components as portions of the privilege

(protection) components. It is important to keep these layers distinct to fully un-

derstand the structure of ITOSS. The satisfaction relation is similarly defined in a

layered manner; the satisfaction relation between combined privileges and combined

protections for a particular mode of access will be defined in terms of a different

satisfaction relation between a privilege and a protection which in turn is defined

in turn of a third satisfaction relation between a privilege component and a protec-

tion component. Since these three satisfaction relations are defined over different

domains, it will be clear which satisfaction relation we are referring to by the type

of constructs being compared.

Definition 2.2.2 Privilege components are sets V ⊆ str of securons and protec-

tion components T are sets of sets of securons (i.e. T ⊆ P(str), where P(S)

denotes the set of all subsets of S).

A privilege component

V = {s1, . . . , sm} , si ∈ str

satisfies (is sufficient to overcome) the protection component

T = {U1, . . . , Um} , Ui ⊆ str

if for some j, 1 ≤ j ≤ k we have Uj ⊆ V . We shall use the notation

V ⇒ T

to denote that V satisfies T .

These concepts allow us to realize in a simply manner very detailed access

control list structures. Thus if we want to express the relation between manager and

16

subordinates described above, we assign to the manager’s processes the privilege

containing the privilege component

V = {0.15.19.7.i | 0 ≤ i ≤ 14},

and to files of the ith subordinate, the protection Ti = {{0.15.19.7.i}} (not {0.15.19.7.i}!)
Now V ⇒ Ti holds for all subordinates. If we wish to make subordinate 1’s files

accessible to an additional user M, we can assign to M a securon s and define his

set of securons to be VM = H∪{s}, where H represents privileges required by M in

other contexts. We also set T ′
1 = T1 ∪ {{s}} and assign this protection component

to the protection for each of the subordinate’s files. Now we have V ⇒ T ′
1 as well

as VM ⇒ T ′
1. We can, in fact, realize any access matrix by means of a sufficiently

detailed assignment of privileges and protections.

2.3 Security Expressions

The above apparatus for implementing privileges and protections is indeed power-

ful but, as it stands, cumbersome. If privilege components V ⊆ str and protection

components T ⊆ P(str) are to be specified by enumeration, then both the assign-

ment of privileges and protections and the testing of whether V ⇒ T will be too

difficult to be of practical use. What we need is a formal calculus which will allow

us to write quickly and economically compact formal expressions denoting rich and

complicated privilege component and protection component sets. The first need is

to describe large subsets of str. This will be done by introducing securon terms

which will also be the atomic terms for building general expressions.

Definition 2.3.1 Let s ∈ str and 0 ≤ i ≤ j ≤ depth(str). Securon terms are:

1. s

2. s[i downto j]

17

Definition 2.3.2 The set SET (t) defined by a term t is SET (s) = {s} for s ∈ str,

and

SET (s[i downto j]) = {u | u ∈ str, u related to s, i ≤ d(u) ≤ j}

Recall that u related to s means u is an ancestor, descendent, or is equal to s.

Thus SET (0[0 downto depth(str)]) = str. And

SET (s[d(s) + 1 downto d(s) + 1])

is the set of all children of the securon s.

Definition 2.3.3 A privilege expression is defined by

1. Any securon term is a privilege expression.

2. If E1 and E2 are privilege expressions then so is E1 ∧ E2.

Definition 2.3.4 A protection expression is defined by

1. Any securon term is a protection expression.

2. If E1 and E2 are protection expressions then so are E1 ∧ E2 and E1 ∨ E2.

A (security) expression is a privilege or protection expression. Note that every

privilege expression is a protection expression but not vice versa.

We must give semantics for these formal expressions, i.e., rules for associating a

set V ⊆ str with a privilege expression, and for associating a set of sets T ⊆ P(str)

with a protection expression. We shall use the notation vpriv(E) to denote the value

of the privilege component defined by the expression E, and vprot(E) to denote the

value of the protection component defined by E.

If t is a securon term then we want to include in the corresponding privilege

component all the securons in SET (t). If E = E1 ∧E2 is a privilege expression, we

want the corresponding privilege component to be the weakest privilege component

stronger than both the privilege component corresponding to E1 and the privilege

component corresponding to E2. This motivates the following definition:

18

Definition 2.3.5 The function vpriv(E), giving the privilege component correspond-

ing to the expression E, is defined by

1. vpriv(s) = {s}, for s ∈ str.

2. vpriv(s[i downto j]) = {u | u ∈ str, i ≤ d(u) ≤ j} = SET (s[i downto j]).

3. vpriv(E1 ∧ E2) = vpriv(E1) ∪ vpriv(E2).

When it comes to protections, we want the protection component corresponding

to a term t to be the set containing all singleton sets {u} for u ∈ SET (t). We want

the protection expression E = E1∨E2 to mean that any privilege component satis-

fying E1 or satisfying E2 also satisfies E. Finally, having the protection expression

E = E1 ∧ E2 should mean that V ⇒ E if and only if V ⇒ E1 and V ⇒ E2.

For sets (of sets) T1, T2 ⊆ P(str) we introduce the notation of cartesian product

given by

T1 × T2 = {U1 ∪ U2 | U1 ∈ T1, U2 ∈ T2}

Notice that T1 × T2 is again a set of subsets of str.

Definition 2.3.6 The function vprot(E) giving the protection component corre-

sponding to the expression E is defined by

1. vprot(s) = {{s}}.

2. vprot(s[i downto j]) = {{u} | u ∈ SET (s[i downto j])}.

3. vprot(E1 ∨ E2) = vprot(E1) ∪ vprot(E2).

4. vprot(E1 ∧ E2) = vprot(E1) × vprot(E2).

If V is a privilege expression and T is a protection expression then V satisfying

T (V ⇒ T) will of course be defined to mean vpriv(V) ⇒ vprot(T), where the

latter relation was explained in Definition 2.2.2. From now on, we shall talk about

privilege components and protection components as either expressions or sets, and

the intended meaning, when not specified, will be clear from context.

19

2.4 An Algorithm for Testing V ⇒ T

The formalism of security expression developed in Section 2.3 allows us to spec-

ify, by writing concise expressions, large, complicated sets as privilege components

and protection components. We need an efficient algorithm for testing whether a

privilege components satisfies a protection component. Let V = E1 ∧ . . . ∧ Em,

where each Ei is a securon term, be a privilege expression and let T be a protection

expression. Thus T = G1 ∨ G2, or T = G1 ∧ G2, or T is a securon term. In the

first case we test whether V ⇒ G1, and if this fails we test whether V ⇒ G2. In

the second case we test whether V ⇒ G1, if this fails then V �⇒ T, otherwise we

continue to test whether V ⇒ G2. Note that we adopt the so called short-circuit

evaluation mode, where irrelevant branches are not pursued.

Thus, recursively, our problem is reduced to testing whether V ⇒ t where t is a

term, say, t = s[i downto j]. The case t = s is, trivially, a special instance of the

former case. Let

V = s1[i1 downto j1] ∧ . . . ∧ sm[im downto jm].

Then V ⇒ s[i downto j] if and only if for some k, 1 ≤ k ≤ m,

SET (sk[ik downto jk) ∩ SET (s[i downto j]) �= ∅. (2.1)

To test (2.1) we introduce, for any u ∈ str and integer � ≤ d(u), the notation

INIT (u, �) to denote the unique string v satisfying:

INIT (u, �) =

⎧⎪⎨
⎪⎩

v where v ≤ u and d(v) = �, if � < d(u)

u if d(u) ≤ �

Denote s̄ = INIT (s, i) and s̄k = INIT (sk, ik). It is now readily seen that (2.1)

is equivalent to the following easily checked condition:

(sk ≤ s ∨ s ≤ sk ∨ (s̄ ≤ sk ∧ s̄k ≤ s)) ∧ ([i, j] ∩ [ik, jk] �= ∅). (2.2)

Here [i, j] denotes the interval of integers � such that i ≤ � ≤ j.

20

A condition of the form (2.2) has to be tested for at most every term in T and

every term in V . Hence

Theorem 2.4.1 We can test whether V ⇒ T holds in time length(V) · length(T).

Let us indicate how to improve the algorithm. It follows from (2.2) that for

sk[ik downto jk] ⇒ s[i downto j] to hold, s̄k = INIT (sk, ik) and s̄ = INIT (s, i)

must be related (Definitions 2.2.1). By precomputing, we store the privilege com-

ponent V in an array

[
〈s̄1, s1[i1 downto j1]〉, . . . , 〈s̄m, sm[im downto jm]〉

]

so that for i < j,(s̄i LEX s̄j), where LEX is a binary relation specifying the lexi-

cographic ordering on strings (securons). To test whether V ⇒ s[i downto j] we

use binary search, i.e., we check whether (s̄k LEX s̄) for k = �m/2�. Assume this

holds, then we check whether s̄k ≤ s̄. If the latter does not hold, then s̄ is not

related to any s̄�, 1 ≤ � ≤ �m/2�, and the problem has been reduced by half. If

s̄k ≤ s̄ does hold, then we check (2.2), and if that fails we continue binary search

on both [1, �m/2� − 1] and [�m/2� + 1, m].

In practice, the combination of this binary search on V with the fact that the

recursion on the structure of T usually does not lead to testing V ⇒ t for every

term t in T , results in running time about linear in log(length(V)) and sublinear in

length(T). In actual experiments, the algorithm is very fast.

2.5 Negative Privileges and Protections

As formulated thus far, the power of privileges is monotonic, i.e., if V1 and V2 are

privilege expressions and vpriv(V1) ⊆ vpriv(V2) then whenever V1 ⇒ T it is also the

case that V2 ⇒ T . The planners of a secure file system may wish to make, in certain

instances, access to some file F1 to be incompatible with access to file F2 because

21

a user who possesses the combined information in F1 and F2 will have dangerous

power.

To enable planners to implement such policies, and for other potential appli-

cations, we introduce the constructs of negative components of protections and

negative components of privileges. The total effect will be to make the power of

privileges non-monotonic.

Definition 2.5.1 Protections have the structure T = 〈T1, T2〉 where T1 and T2 are

protection expressions. The first and second components of T are called, respec-

tively, the positive and the negative protections of the file.

Similarly, privileges will have the structure V = 〈V1, V2〉.
A privilege V = 〈V1, V2〉 satisfies T = 〈T1, T2〉, again written as V ⇒ T , if

V1 ⇒ T1 and V2 �⇒ T2.

When talking about a privilege V = 〈V1, V2〉, we shall often use V + = V1 and

V − = V2 to denote the positive and negative components of V , and similarly for

protections.

By way of illustration, if in the above example Fi was protected in the old sense

by expression Ti, i = 1, 2, then protecting Fi by 〈Ti, T1 ∧ T2〉, and using privileges

of the form 〈V, V 〉, will exactly enforce the desired discipline.

The second component of T can be left empty and then, by convention, V ⇒ T

if V + ⇒ T+.

Remark: Definition 2.5.1 is preliminary and is intended to illustrate the effect

of the positive and negative components in achieving non-monotinicity of privi-

leges. Later on, when treating non-modifying privileges (see Definition 2.6.3 and

the Change Protection privilege (Definition 2.7.1) we shall introduce additonal com-

ponents into those privileges.

22

2.6 Indelible Protections and Confinement

Two additional enhancements of the privilege and protection structures are needed

for addressing problems arising in file system security arrangements.

One of the modes of access to a file is the Change Protection mode which enables

the user to change one or more of the file’s protections. Since changing protections

of a file may have far reaching and sometimes unforseen consequences, we want to

have a mechanism for limiting the change of protection even when allowed.

To this end we introduce the notion of indelible security expression !E, where

E is an expression. The intention is that the indelible portion of a protection

component on a file cannot, as a rule, be changed by a process even if the process

has Change Protection rights with respect to that file. It will, however, be seen

later that a “bypass” exception to this preservation of indelible protections rule is

needed.

Since the intention is to provide a floor below which a protection cannot be

lowered, it is readily seen that incorporation of indelible components in a protection

〈T+, T−〉 should be in the manner

T = 〈T1∧!E, T2∨!G〉. (2.3)

In this way, any modification of T+ leaves at least !E, and any modification of of

T− leaves at most !G.

We allow E and G to be written as any valid protection expressions. However,

since E and G are indelible portions of protection components, we will give them a

special interpretation. We will always treat E as a list of securons that are connected

by ∧ and G as a list of securons that are connected by ∨. NOTE: EXPLAIN WHY.

The details of this interpretation are explained in the remainder of this section.

The concept of indelible protections is closely related to the issue of confinement

of information. [Lampson 73] To illustrate confinement, assume that a file F has

the Read protection 〈!E, !G〉, i.e., no mutable portion is present. Let another file

23

F̄ have the Read protection 〈!Ē, !Ḡ〉. Assume that some process P can read F
and can write into F̄ . The process P may then copy information from F into F̄ .

As matters now stand, there may be another process P1 which cannot read F but

can read F̄ . This process P1 may gain access to information in F via its copy

placed in F̄ by P . Our intention in providing indelible protections was to avoid

unforseen declassification of information in a file through change of protection. It is

reasonable to assume that for files guarded by indelible protections, we would also

want to avoid inadvertent leakage of information in the manner described just now.

To this end we introduce the concept of confinement and a mechanism to enforce

it.

Define READERS (F) by

READERS (F) = {P | P can read F , based on the indelible portions of the protections of F}.

Similarly, define WRITERS (F) by

WRITERS (F) = {P | P can write F based on the indelible portions of the protections of F}.

Confinement can now be formally be defined as: For any process P and files

F , F̄

P ∈ READERS (F) ∧ P ∈ WRITERS (F̄) → READERS (F̄) ⊆ READERS (F).

(2.4)

Let us emphasize that only the indelible portions of the protections of F and F̄
play a role in (2.4). Note that it also follows from the above definition of confinement

that information can not leak from a protected file to an unprotected file by a

sequence of reads, writes, and other accesses.

The above discussions lead to natural extensions of our previous privilege and

protection structures. Our positive and negative protection components will (op-

tionally) have indelible portions so that a typical protection with have the form

T = 〈T1∧!E, T2∨!G〉 (2.5)

24

where T1, T2, E, and G are any protection expressions. By way of abbreviation,

we shall use the notation T = 〈T+, T−〉 to describe (2.5) so that T+ = T1∧!E1 and

T2∨!G. We shall call T1 and !E, respectively, the mutable and indelible portions of

T+, and similarly for T−.

The semantics for vprot(!H) will depend on the context, i.e. on whether !H is

part of T+ or T−. We accordingly introduce the notations v+
prot and v−

prot to mark

this distinction.

To help simplify the specification of v+
prot(!E) and v−

prot(!G), we extend the notion

SET (t) introduced in Definition 2.3.2. for terms to the case of general security

expressions H. Recall that vprot(H) = {U1, . . . , Uk}, Ui ⊆ str.

Definition 2.6.1 For any security expression H define

SET (H) =
⋃

U∈vprot(H)

U.

Thus SET (H) consists of all the securons “appearing” in vprot(H). It follows

that for a privilege expression E, vpriv(E) = SET (E).

Definition 2.6.2 Let H be an expression. Define

v+
prot(!H) = {SET (H)}.

v−
prot(!H) = {{s} | s ∈ SET (H)}.

v+
priv(!H) = vpriv(!H) = SET (H).

The intention is that in 〈T1∧!E, T2∨!G〉, !E will give maximal positive protection

and !G will give maximal negative protection. Accordingly, we defined v+
prot(!E) to

be all of SET (E) and v−
prot(!G) to be any of {s}, s ∈ SET (G).

Note that v+
prot(!E) always has the form {{s1, s2, . . .}} and v−

prot(!G) always has

the form {{s1}, {s2}, . . .}, where s1, s2, . . . are securons. For privileges, v+
priv(!E)

and v−
priv(!G) are, as before, sets {s1, s2, . . .} of securons.

25

We now turn to the specification of privileges incorporating indelible expressions.

Privileges for non-modifying actions (i.e. Read, Execute, and Detect) will have

components whose functions will be to enforce confinement.

Definition 2.6.3 Privileges for non-modifying modes of access have the form

V = 〈V1, V2, M1, M2〉 (2.6)

where V1 and V2 are privilege expressions, and M1 and M2 are any expressions. In

(2.6), V1 and V2 are positive and negative components of V , and M1 and M2 are

called the positive and negative mediating components of V.

We must also extend the notion of satisfaction for security expressions to the

case where indelible expressions are included.

Definition 2.6.4 Let V be a privilege component expression and T+ = T1∧!E,

T− = T2∨!G be protection expressions. Define

V ⇒ T+ if V ⇒ T1 and vpriv(V) ⇒ v+
prot(E). (2.7)

V ⇒ T− if V ⇒ T2 or vpriv(V) ⇒ v−
prot(G). (2.8)

In (2.7) and (2.8), the satisfaction relation on the right hand side is that of

Definition 2.2.2, and its extension to expressions, explained after Definition 2.3.6.

Definition 2.6.5 Let Vrd, with notation as in (2.6), and Trd = 〈T1∧!E, T2∨!G〉 be,

respectively, a Read privilege and a Read protection. We shall say that Vrd satisfies

Trd (Vrd ⇒ Trd) if

1. V1 ⇒ T+.

2. V2 �⇒ T−.

3. SET (E) ⊆ SET (M1).

26

4. SET (G) ⊆ SET (M2).

The notation V ⇒ T is similarly defined for the other non-modifying access privi-

leges.

Definition 2.6.6 Let T = 〈T1∧!E, T2∨!G〉 and T̄ = 〈T̄1∧!Ē, T̄2∨!Ḡ〉, we shall say

that T̄ indelibly dominates T if

SET (E) ⊆ SET (Ē) , SET (G) ⊆ (Ḡ).

Lemma 2.6.1 If Trd = 〈T1∧!E, T2∨!G〉 and T̄rd = 〈T̄1∧!Ē, T̄2∨!Ḡ〉 are Read pro-

tections for files F and F̄ respectively and T̄rd indelibly dominates Trd, then it is

the case that READERS (F̄) ⊆ READERS (F).

Proof: By definition, only the indelible portions of privileges play a role in de-

termining READERS (F) and READERS (F̄). Let P be a process with (indelible)

Read privilege Vrd as in (2.6), such that P ∈ READERS (F̄). Then, by definition,

vpriv(V1) ⇒ v+
prot(Ē). (2.9)

vpriv(V2) �⇒ v−
prot(Ḡ). (2.10)

SET (Ē) ⊆ SET (M1) , SET (Ḡ) ⊆ SET (M2). (2.11)

Relation 2.9 is equivalent to SET (Ē) ⊆ SET (V1) and relation 2.10 is equivalent

to SET (V2) ∩ SET (Ḡ) = ∅.
To say that T̄rd indelibly dominates Trd means that SET (E) ⊆ SET (Ē) and

SET (G) ⊆ SET (Ḡ). Hence the previous paragraph implies SET (E) ⊆ SET (V1)

and SET (V2)∩SET (G) = ∅. Also, SET (E) ⊆ SET (M1) and SET (G) ⊆ SET (M2).

Thus Vrd ⇒ Trd and P ∈ READERS (F).

Enforcing confinement means that if some process P reads F and can write

into F̄ , then READERS (F̄) ⊆ READERS (F) should hold. This is insured by the

following specification:

27

Definition 2.6.7 Let a process P have the Read privilege Vrd = 〈V1, V2, M1, M2〉
and Write privileges Vwr; and a file F̄ have the Read and Write protections T̄rd =

〈T̄1∧!Ē, T̄2∨!Ḡ〉 and T̄wr. The process P will be permitted to write F̄ if and only if

1. Vwr ⇒ T̄wr (in these sense of Definition 2.5.1, disregarding the mediating

components.)

2. SET (M1) ⊆ SET (Ē).

3. SET (M2) ⊆ SET (Ḡ).

Theorem 2.6.1 If for files F , F̄ some process P can read F and write into F̄ then

READERS (F̄) ⊆ READERS (F). Thus confinement is enforced.

Proof: Let P have privileges Vrd and Vwr as before and let F and F̄ have protections

Trd = 〈T1∧!E, T2∨!G〉, T̄rd = 〈T̄1∧!Ē, T̄2∨!Ḡ〉, respectively. The conditions of the

theorem and definitions 2.6.5 and 2.6.7 imply

SET (E) ⊆ SET (M1) ⊆ SET (Ē),

SET (G) ⊆ SET (M2) ⊆ SET (Ḡ).

Hence F̄ indelibly dominates F , which by lemma 2.6.1 entails READERS (F̄) ⊆
READERS (F).

2.7 Bypass Privileges

The introduction of indelible protections serves to enhance security by prohibiting

inadvertent change of protections and by enforcing confinement. The intention in

having indelible expressions is that they are unmodifiable even by a process that

does have powerful Change Protection privileges Vcp. This strict interpretation of

indelible protection creates practical difficulties. Clearly some carefully controlled

28

processes must have the ability to change even indelible protections if such protec-

tions turn out to be too strict or if, later on, there arises the need for “declassifying”

a file. Also, strict enforcement of confinement causes information to flow only up-

ward in terms of security. Pragmatic needs require exceptions to this rule. The

possibility to do so is realized through augmentation of the Change Protection

Privilege.

Definition 2.7.1 The Change Protection privilege has the structure

Vcp = 〈V +, V −, B〉

where B is called the bypass component. Let F be a file with Change Protection

protection Tcp = 〈T+, T−〉 and TX = 〈T1∧!E, T2∨!G〉 be any of F ’s protections

(X = cp included). If V ⇒ T+ and V �⇒ T− then the privilege Vcp is sufficient for

changing the mutable components T1 and T2 in TX to any other mutable expressions.

If, in addition,

SET (E) ⊆ SET (B) and SET (G) ⊂ SET (B) (2.12)

then the indelible components !E and !G can be changed as well.

Assume that a process P has Change Protection privilege Vcp, and a file F has

Change Protection protection Tcp and another protection, say Trd, with notations

as above. If Vcp satisfies Tcp and (2.12) holds for Trd, then P could read F by first

changing Trd to 〈{∅}, ∅〉. Later P can restore Trd to its original value 〈T+, T−〉. This

motivates the following rule: Under the above conditions, P can read F ; similarly,

any other access X to F is permitted.

2.8 Gradation of Actions on Files

Until now we made no assumption about the relative strengths of protections on

a file F . If we consider the effect of various modes of access to a file, we see that

29

it does not make sense to have a weak Change Protection protection Tcp coupled

with a strong Read protection Trd. For a file protected in this way may be read

by first changing the Read protection Trd and then reading the file. Thus it makes

sense to partially order the modes of access to a file and require that protections

be correspondingly ordered.

Similar considerations apply to privileges associated with processes. Here the

privilege for the more powerful action should be weaker. A reasonable, but by

no means unique, gradation of modes of access to files is as follows. Changing

protection of a file is the farthest reaching action, for by doing this all other modes

of access can become available. Detecting the existence of a file F in a directory

D is the minimal mode of access. For if a process, for example, writes into F it

presumably knows of the existence of F . Reading and executing a file are about

equally powerful actions. For if a process P can read an executable file F then it

can copy it to an executable file and subsequently execute it. Conversely, if P can

execute F then by appropriate tracing the content of F can be fairly accurately

reconstructed. Finally, there is no clear dominance between reading or writing

into a file. These considerations lead to the semi-ordering of strengths of actions

depicted in 2.8 above.

As explained before, protections on a file F should reflect this ordering. This

does not mean, of course, that across different files F and F̄ , the Change Protection

protection T̄cp for F̄ should be stronger than, say, the Read protection Trd for F .

A convenient way for implementation order among protections is by syntactic

means. We shall say that T̄ = 〈T̄1∧!Ē, T̄2∨!Ḡ〉 dominates T = 〈T1∧!E, T2∨!G〉 if

for some expressions H1, H2,

T̄1 = T1 ∧ H1, T̄2 = T2 ∨ H2,

and, furthermore, T̄ indelibly dominates T , i.e.

SET (E) ⊆ SET (Ē), SET (G) ⊆ SET (Ḡ).

30

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�
�

Change Protection

Detect

WriteRead, Execute

Figure 2.1: The hierarchy of access modes

31

Chapter 3

Sentinels

3.1 Overview

The mechanisms described in the previous chapter form a passive, pure access

scheme; they describe when a process P can access a file F but the mechanisms

perform no other action. While the pure access scheme gives us much power, there

are basic security functions that it can not support. Thus, if we wanted to audit

accesses to F , that is record the names of all users who accessed a file F , we would

have to either modify the operating system kernel or modify all application code

that might access F . Since modifying and testing new code would be a laborious

and dangerous process, this solution could only be rarely used and then with great

difficulty. In this chapter we will extend the pure access scheme with sentinels.

Sentinels allow us to conveniently add functions such as auditing. These functions

can be customized to reflect any special needs an organization may have.

Here is how a sentinel for a file F works: Roughly speaking, a sentinel S is a

name, listed in a F ’s protection header, of an executable file FS. When any process

P opens F , the operating system schedules FS for execution as a process S. The

process S is passed some parameters that allow it to perform various operations.

The sentinel programs can be written to perform any desired action.

32

For example, if the security engineers wish to have an audit fucntion, they create

a sentinel named, say, Saudit and write an appropriate program FSaudit
. The program

FSaudit
will accept as parameters the identity of the process P accessing a file F ,

the name for F and for the file F̄ into which the access to F is recorded, and any

other specified paremters. The code of FSaudit
will realize the desired manner in

which the access to F will be recorded in F̄ .

Suppose we only wished to record access when a member of a certain class of

users accessed F . We could attach a sentinel S which checked whether the user

accessing F belonged to the class. If he did, S would record the fact; if he did not, S

would abort. While this is an adequate solution, it would be even better if we could

keep overhead costs down by keeping process creation to a minimum. To allow this,

we further extend the form in which a sentinel appears in a protection header to

include a trigger condition R. Then sentinel S is only scheduled for execution by

the operating system kernel when F is accessed and the process meets the trigger

condition R.

Enhanced functionality is achieved by separating sentinels into different classes.

Auditing simply requires that S make the necessary records in the audit file when P
reads F . A more sophisticated form of sentinels will take action only when certain

records are read. For example, certain records in F might have a keyword secret

attached to them. We may wish to have a sentinel S guarding F which will allow

most accesses, but restrict access to secret records. The first example requires

only an asynchronously running process, but the second example requires that

S be able to continually monitor and approve individual I/O operations between

P and F . To achieve such mode of operation, we introduce two types of sentinel

mechanisms: asynchronous sentinels which run independently of P and synchronous

sentinels (also called funnels) which “lie between” P and F . By “lie between”, we

mean that S is able to inspect and approve all I/O operations from P to F . (In

our implementation, funnels utilize UNIX named pipes. [Ritchie-Thompson 74],

33

[Kernighan-Plauger 76], [Leffler-Fabry-Joy 83])

A very sophisticated attack might try to read a file F protected by an asyn-

chronous sentinel S and then crash the operating system before S can perform its

function. To prevent this, we further specialize sentinels to allow Lazarus processes

which will, if interrupted by a system crash, be rerun when the operating system

is rebooted.

When a sentinel S runs as a process, it must, as all processes, have some priv-

ileges. One choice an implementor could pick would be to have all sentinels run

as the system user. This would not conform to the philosophy of this work which

always calls for tailoring privileges to be the minimal ones necessary to perform

the task at hand. In addition this would mean that we could not allow individual

users to attach sentinels for their own purposes. To allow sentinels to be used in

the widest possible context, we give each sentinel file FS an assigned privilege VS.

When the sentinels is scheduled by the operating system, it will run with privi-

lege VS. A sentinel file is a special case of an exectuable file. In Chapter 4, we

spell out the details of the assignment of privileges (more generally incarnations)

to executable files and to sentinels.

It should be emphasized that we introduce sentinels as an operating system

supported mechanism or tool. A particular version of ITOSS may come with a

repertory of some standard sentinels which security engineers may use. But the

sentinel tool allows security engineers to write any additonal sentinel files to per-

form useful security functions, and to routinely and effortlessly deploy sentinels as

protections for files.

3.2 Semantics of Sentinels

Definition 3.2.1 A sentinel S is an ordered tuple 〈FS, t〉 where FS is the name of

a file, and t is the type, 1, 2, or 3 indicating that the sentinel S is

34

1. Asynchronous,

2. Synchronous,

3. Lazarus.

Suppose a process P attempts to access a file F . Suppose further that P ’s

privilege for that access mode is VP and F ’s protections for that access type are

T including a sentinel S. First, the operating system tests whether VP ⇒ T .

This determines whether P can access F . But regardless of the result, S can be

executed as a sentinel. The operating system checks to make sure that FS exists

and is executable. If it is, S is created by the operating system with privileges

VS and executes according to type t. (See section 3.3 for a discussion of types of

sentinels.)

To reduce unnecessary executions of FS from being activated, we would like to

express a trigger condition R specifying when S should be run by the operating

system. There are several possibilities for expressing conditions R. We chose to

use our privilege/protection scheme for this purpose, but it is easy to imagine other

good choices for expressing trigger conditions.

Recall in equation (2.3) we saw the most general form of a protection,

T = 〈T1∧!E, T2∨!G〉. (3.1)

Definition 3.2.2 A sentinel clause C is an ordered pair of a trigger R and sentinel

S. The trigger R is a protection expression of the form of equation (3.1) and S is

a sentinel as defined in Definition 3.2.1. We write C as R → S.

Suppose a process P with privileges VP tries to access a file F protected by a

sentinel clause R → S, when S = 〈FS, t〉. The operating system checks whether

VP ⇒ R. If it does, the operating system will run FS.

35

We allow arbitrarily many sentinel clauses C1 = R1 → S1, C2 = R2 → S2, . . . to

be attached to a protection. The operating system kernel will check each Ci, seeing

whether VP ⇒ Ri, and activating all the Si which are triggered

Using this notation, we have a unified way of writing not just sentinel clauses,

but also the pure access scheme. For example, if F has protection T and clauses

C1, C2, . . . for access mode X, we can write an extended protection for access mode

X,

(T → ACCESSX) ∧ (R1 → S1) ∧ . . . ∧ (Rk → Sk) (3.2)

where ACCESSX means that access mode X is permitted to the file.

There are two important exceptions to the above rules:

1. If S = 〈FS, t〉 is a sentinel, then FS can be an arbitrary executable file. In

particular, FS itself may be protected for Execute access by a sentinel S ′. If

S is triggered, it could lead to a chain of sentinels triggering sentinels — or

even an infinite loop of sentinel scheduling. To prohibit this, we specify that

a sentinel can only be triggered by a process P which is not a sentinel.

2. If a synchronous sentinel S guards a file F in its Change Protection protection,

it can approve or disapprove each attempted action on F . In particular, it

could prevent any process from changing F ’s protection. Since the sentinel S

is part of F ’s extended protection, S could never be removed. To prevent this,

sentinels are not allowed to be attached to Change Protection protections.

3.3 Types of Sentinels

As indicated above, there are three types of sentinels: asynchronous, synchronous

(also called funnels), and Lazarus. This section discusses technical issues related

to the different types of sentinels. When process P triggers a sentinel S = 〈FS, t〉

36

by accessing F , the sentinel S is passed certain information through environment

variables:

1. the name of P ,

2. P ’s privileges,

3. the name of F ,

4. F ’s protections,

5. parameters to the system call accessing the file,

6. other parameters which may be specified in the protection field of the F (these

parameters are ignored by the protection mechanism and are used only by

the sentinel receiving the data.) and

7. whether access was permitted by the pure access scheme.

Here are some technical details concerning our current implementation of syn-

chronous sentinels in ITOSS. If the sentinel S is synchronous its input stream is

triggered whenever P attempts to access F . The data on the input stream to S
contains the parameters of the I/O call to F . While S executes, the process P
is in the wait queue. The sentinel S can perform arbitrary actions on the input

parameters. The sentinel S writes data to its output stream. That data forms

the actual parameters used in the I/O call. If S writes a null field, the I/O call

is refused. When the I/O call returns, the value is passed to S. The sentinel S
can then alter the return value. The sentinel S then is put in the wait queue while

P continues. If several synchronous sentinels are triggered by one access, the I/O

calls are passed to the sentinels in the same order they were triggered.

If S is Lazarus, a simple reliability mechanism is provided which protects sen-

tinels from attacks which rely on crashing the system to avoid auditing. When S is

triggered, a file system entry E is created in non-volatile memory before access to F

37

is permitted. When S terminates normally, E is removed. However, if the operating

system should crash or S is manually terminated, the entry E remains. When the

system reboots, the boot procedure can detect E and retrigger S, activating FS

with the appropriate paremeters.1

3.4 Examples

We envision that a library of sentinels would provide basic security for most pur-

poses. This library could be supplemented by any number of specially written

sentinels for any desired security function.

Here are a few examples of how sentinels can be used. Some computer terminals

have an identify sequence. This is a sequence of up to several hundred characters

stored in random access memory within the terminal. The identify sequence is

loaded from, and read back to, the central computer in response to command char-

acters sent from the computer to the terminal. A letter-bomb is a piece of electronic

mail containing character strings which first load a new identify sequence into the

terminal, and then requests the identify sequence back. Thereby the sender of a

letter-bomb can force any sequence of characters to be entered into the computer

from a terminal. For example, the letter-bomb sender can force a sequence of char-

acters to be sent which is a command deleting the terminal user’s files. There are

only two ways to protect against letter bombs in existing operating systems: ei-

ther prohibit all terminals supporting identify sequences, or else put special code in

the kernel (device driver) that prevents certain sequences of characters from being

transmitted. Every time a new type of terminal is added, new code must also be

added to the system. But sentinels yield a simple solution to the above problem: at-

1While the current version of ITOSS has not explicitly implemented Lazarus sentinels, they

are available in the current implementation by using a two-phase commit protocol [Eswaran et al

76] in a synchronous sentinel and a special directory /lock.

38

tach a synchronous sentinel which checks for the dangerous sequences to the device

files corresponding to the terminals which are vulnerable. The overhead incurred by

including such a sentinel, if properly implemented, is very low, less than that of a

window manager. In fact, this same sentinel could use other “forbidden sequences”

(passed as paremeters) to prevent, if so desired, any particular piece of sensitive

information containing a keyword, from being displayed on a particular terminal.

This would be very useful if that terminal is located in an unsecured location.

Because sentinels are a powerful and general mechanism, we believe that they

can be used in other software engineering applications outside of security.

NOTE: ELABORATE

3.5 Previous Work

The nearest previous concept to sentinels are daemons. (Introduced in the MUL-

TICS operating system [Daley-Dennis 68] and the THE operating system [Dijkstra

68].) Daemons are continually running processes which maintain operating system

functions such as providing for printing subsystems which require management of

queues of files to be printed. Sentinels provide a much finer degree of control than

daemons.

Several operating systems, such as MULTICS ([Organick 72], [Schroeder-Saltzer

72],), Hydra ([Wulf-Levin-Harbison 81), and UNIX ([Ritchie-Thompson 74]) at-

tempted to address the issue of allowing a special process to actively intervene in

I/O operations. The approach these systems adopted was to require that the in-

termediate processes — which correspond to our sentinels — be directly executed

rather than passively triggered. Files were guarded by a restricted protection, and

the intermediate process was granted powerful rights when executed. In UNIX,

for example, each program X can have a set-UID bit set to be true. If it is, then

X will assume the rights of the owner of X when it is executed. For example, a

39

protected database would have a set-UID front-end; when data was changed, it

could only be written by the front-end since no other ordinary user could write any

bits of the database. Unfortunately, the only appropriate choice for most set-UID

identities is the special user root, which can read or write any file in the system.

Whenever root owns a set-UID program, that program becomes a potential source

of security errors; since the set-UID program has arbitrary power in the operating

system, the entire security structure of UNIX must be reproduced in every set-UID

program. (Berkeley UNIX 4.2 has dozens of set-UID programs and there several

widely known ways to violate the security of UNIX by exploiting weaknesses in

those programs. Several methods that are also common to AT&T UNIX system V

are described in [Grampp-Morris 84].)

40

Chapter 4

Incarnations and Secure

Committees

4.1 Overview

A centrally important issue in secure operating and file systems is the correct and

prudent management of privileges and protections, i.e., of access rights to files.

There are several problems and dangers arising from the way access rights are

assigned to users in existing systems.

A person often has a number of roles in which he is active within an organization,

and which give rise to his interaction with the file system. In existing systems a

user is usually presented to the operating system by a single entity through his login

name, and this entity determines his access rights without regard to the purpose of

his current computer session.

Assume that a user wishes to play a computer game. The program that he runs

may have been inadequately tested and may contain Trojan Horse code. But the

user’s process running the program has access to all the files available to that user,

so that the Trojan Horse code can cause serious damage.

Another difficulty arises when we have to add or revoke access rights. Assume

41

that person A is in charge of a certain department and is chairman of a certain

committee. These roles require access rights to two, possibly overlapping, sets of

files. When person A is replaced by person B as chairman, the revocation of his

access rights to the relevant files, and the assignment of these rights to B is a

cumbersome and error prone process in existing systems.

In ITOSS the basic entities on whose behalf computing processes run are ab-

stracted as incarnations. Each incarnation has combined privileges which will be

attached to the processes created by it, and a scheme for attaching combined pro-

tections to the files created by these processes.

The set of incarnations is specified and dynamically updated by management,

and generally reflects the organizational work roles. Each user has a number of

associated incarnations with his login. When he logs in, he selects an appropriate

incarnation from a menu of the incarnations available to him.

Consider the user A mentioned before. The security engineers create incarna-

tions IheadX , IchmnY to represent the roles of head of Department X and chairman

of Committee Y , and an incarnation Imin with minimal privileges. If user A wishes

to run the game program, he invokes the incarnation Imin which has no access rights

to any significant files. If A is replaced by B as chairman of Committee Y , the se-

curity engineers remove IchmnY from the incarnations available to A and associate

it with B.

A concern equally important to the aforementioned control of privileges of pro-

cesses is the correct assignment of protections to files. ITOSS proves means for

automatic assignment of headers, including combined extended protecteions, to

files. This stands in contrast to most previous schemes which placed the brunt

of responsibility for protection files on the individual user who created the file. In

practice, the prevailing approach worked poorly: non-expert users who did not fully

understand the working of the operating system would give incorrect security spec-

ifications. ITOSS, with its far richer ensemble of security mechanisms, would be

42

an even greater challenge to non-expert users. Moreover, even well-informed users

acting in an uncoordinated fashion could not properly manager the assignment of

the global resource or individual securons.

Our innovation allws us to shift this responsibility to the security engineers.

The protection assignment is performed by an operating system mechanism which

takes into account the context in which a given file was created, insuring that filew

will always be created with appropriate protections.

A prevalant difficulty with system security features is that they are generally

unused by users of the computing system. The automated nature of ITOSS solves

this problem.

In existing systems there are always some users, such as the system program-

mers, who have access to all of the system’s resources and files. This arrangment

poses obvious security dangers. In ITOSS, every role is represented by an incar-

nation. Usually an incarnation is assigned to a user who may in addition control

several other incarnations, i.e., one user controls several incarnations. Dually, the

secure committee tool allows management to subject control of any incarnation I
to a committee of n users, so that a quorum of q committee members is required to

invoke the incarnation I and execute commands through it.

Assume that the security engineers decide to create a secure committee SCOMM

with certain access privileges, and wish to have SCOMM governed by a quorum

of at least q of the users U1, . . . ,Un. They create a committee incarnation Icomm

and committee-member incarnations I1, . . . , In where Ij is assigned to user Uj. If

k ≥ q users Ui1 , . . . ,Uik need to invoke Icomm, then each Uij selects his committee-

member incarnation Iij . Every Uij , 1 ≤ j ≤ k then makes through Iij a system

call to invoke Irmcomm. These calls by Ii1 , . . . , Iik may involve, for greater security,

“pieces” of a secret password in a manner explained in Section 4.3. The system

creates Icomm only after having such k ≥ q calls from SCOMM members.

The operating system records the identifiers of the incarnations Ii1 , . . . , Iik (here

43

q ≤ k) representing the users participating in the session. After the incarnation

Icomm is invoked, every command by a joint shell owned by Icomm must be approved

by all committee members participating in the session. Each participating mem-

ber acts from his terminal and gets every system command for his inspection and

approval.

The creation of secure committees, like all other security functions in ITOSS,

is entrusted to the security engineers. As mentioned in the introduction, the secu-

rity engineers and system programmers may also be organized into various secure

committees, with possibly different quorums depending on the tasks and access

privileges of the committee in question.

4.2 Incarnations

Essentially, in ITOSS, incarnations are the entities on whose behalf computing

processes are running, and which control those processes. The technical details

relating to incarnations are as follows. What is required is a specification of the

combined privileges of processes P invoked by an incarnation, and a mechanism for

assigning combined extended protections to the files created by such processes P .

Definition 4.2.1 An incarnation I has associated with it combined privileges (Vrd, Vwr, Vex, Vdt, Vcp

and an automatic assignment protection schema π. (The structure of π is given in

definition 4.2.2.)

We allow each user U to have a number of incarnations I1, I2, When U logs

onto the computer, he must pick an incarnation. He can change his incarnation

at any time. (On display terminals supporting windows, the incarnation can be

displayed at all times to remind the user of which mode he is in.) All processes

created by the user will have the default privileges specified by the incarnation. And

all files created by such processes will have protections assigned to them according

44

to the protection schema π of that incarnation. An important extension of this

rule, in the case of executable files, is explained next.

Assume that a user U invoking incarnation I runs a process P executing pro-

gram A. At a certain point P creates a new file F . We wish to make the combined

extended protection V attached to F dpend on: (a) the incarnation I, i.e. the

organizational role creating F ; (b) the program A; and (c) the type t of the file F
(e.g. executable file, directory sensitive data, encrypted data, etc.), this type being

known to the program A.

Definition 4.2.2 Let C be a set containing names of library programs and the

keyword other, Z be the set of integers, and H be the set of combined extended

protections. An automatic protection assignment schema is a function π : (C,Z) →
H.

The operational meaning of Definition 4.2.2 follows. Suppose U is in incarnation

I with automatic protection assignment schema π. When U creates a new file F
while using application program A, the ITOSS protection assigner checks whether

A ∈ C. If this is true, A is used as the first argument to π. If not, the keyword

other is used. The program A can pass information about the type t requirements

of the file as an integer through the second argument to π. second argument in Z.

If no value is specified, we set i to be zero. The file F is given the protection header

π(A, i) or π(other, i) suggested by I if changing protection, as the case may be.

Furthermore, the semantics of the automatic protection schema π is extended

to enable a user to safely change the protection of an existing file. If a user while

in an incarnation I has change protections rights to a file F , he could execute a

command specifing a program name A and an integer i which would assign to the

file F the combined protections that would have been assigned to F if it had been

created by A with the integer i passed as the second parameter to π.

45

4.3 Secure Committees

In many organizations actions with major consequences are made by groups of

people. For example, payments of large amounts of money may require co-signers.

This eliminates risk arising from the corruptibility of a single person.

We wish to emulate this feature for system management. We define a secure

committee to be an incarnation Icomm requiring a quorum q people out of a set of

users {U1, . . . ,Um} to approve all actions. As usual in ITOSS, the users U1, . . . ,Um

are represented in the system by incarnations I1, . . . , Im. A committee session is

an active meeting of at least q committee members, who are called the participants.

The incarnation Icomm can be invoked only through cooperation of q committee

members. During a committee session, every proposed command will be presented

to all of the participants. The command will be performed only if each of the

participants explicitly approves it. Hence each participating committee member

has veto power during the session in which he is active.

To implement secure committees, we need to use a secret sharing algorithm due

to Adi Shamir. [Shamir 79] The algorithm gives a protocol for dividing a text t

into m encrypted pieces such that q pieces determine the value of t, but q−1 pieces

give no information about the value of t.

We do all computations with integer residues modulo a prime p. The value of

p is chosen to be larger than m and than all possible values of t. Let

h(x) = r1x
q−1 + r2x

q−2 + · · · + rq−1x + t (4.1)

be a polynomial, where the ri are independent randomly chosen integer residues.

The pieces of the secret are the values h(1), . . . , h(m). The secret is t = h(0). Since

q values of h determine a nonsingular linear system of q equations in q variables,

Lagrangian interpolation will allow us to recover the values of the coefficients of h,

and hence t. On the other hand, q − 1 values of h do not provide any information

about the value of t.

46

For implementing secure committees, we let t be the password to the secure

committee incarnation. A sentinel called the dealer box picks a random polynomial

h of the form in (4.1), and securely distributes the pieces h(1), . . . , h(m) of the

secret to appropriate files accessible by the incarnations I1, . . . Im of the individual

committee members U1, . . . ,Um. (Secure distribution may use file system protection

primitives or may depend on private key encryption.)

When a quorum of q users wish to form a secure committee, they pass their

pieces of the password t to the dealer box which assembles the pieces of the secret

and passes the value t to the password checking program. If the password checker

accepts t, a secure committee incarnation Icomm is invoked. Meanwhile, the dealer

box picks a new random password t′ and random polynomial h′. After registering

the password t′ with the password checker, the dealer box securely distributes the

new pieces of the secret h′(1), . . . , h′(m) to the committee members. (If the system

should crash prior to completing distribution, the password checker will still accept

t.) This keeps an opponent from slowly gathering pieces of t and being able to form

a secure committee by himself.

The secure committee concept can be extended in several straightforward ways.

The protocol can support “weighted quorums” where different numbers of members

are required to form a secure committee depending on rank. For example, we

can give each junior member one piece of the password and each senior member

two pieces. The secure committee tool is also very appropriate for distributed

implementations of secure operating systems.

If there are operations which do not require the full strength of the committee

but are still sensitive, the committee can delegate these tasks to subcommittees

by using sentinels. In the degenerate case, some simple sensitive tasks may be

entrusted to a single user — a machine operator, for example.

47

Chapter 5

Fences

5.1 Validation

Once an implementor has specified a language for expressing security constraints

and provided a mechanism for enforcing them, the task he faces is to validate the

resulting system so to show that it is free of errors. Validation is an important issue

not just for security but for software engineering in general, and a large number

of methods, such as formal verification, testing, structured walkthroughs, have

been proposed for dealing with this problem. In practice, none of these methods

guarantee software without errors; they merely increase the confidence a user has

in the system.

Validation for security is special because in many cases we are trying to prohibit

some event from occurring. In this chapter, we propose a general method, fences,

for providing a “second test” of security conditions.

The term “fence” was first applied to the IBM 7090 computer to describe a

memory protection mechanism. [Bashe et al 86] In this context, a fence was a

pointer into memory which separated user and system memory. Memory beyond

the fence was accessible only in system mode, and this was enforced by independent

hardware.

48

In our usage, a fence is any low-overhead hardware or software feature which

enforces security conditions by testing values independently of the main stream of

execution, allowing operations to be performed only if they do not violate security

conditions.

5.2 Fingerprints

In the course of his research on string matching, the first author proposed a special

hash function, called a fingerprint. [Rabin 81] His fingerprint function FK(x) hashes

a n-bit value x into a m-bit value (n > m) randomly, based on a secret key K. The

interesting point is that given a y, if K is unknown, then no one can find an x such

that FK(x) = y with probability better than 2−m.

(Briefly, Rabin’s algorithm picks an irreducible polynomial p of degree m over

the integers modulo 2. The coefficients of p, taken as a vector, form the key K.

The bits in the input x are taken as the coefficients of a n − 1 degree polynomial

q. Let r be the residue of q divided by p in Z2[x]. r is a m − 1 degree polynomial,

and its coefficients, taken as a vector, form FK(x). A software implementation of

this algorithm merely consists of a sequence of very fast XOR operations. [Rabin

81] gives this algorithm in greater detail. [Fisher-Kung 84] describes a very fast

systolic hardware implementation of this algorithm.)

With the fingerprinting algorithm, we can install powerful fences. Suppose we

wish to guarantee that a file F has not been tampered with. One way we could

protect against this is by installing a synchronous sentinel to guard F . However, F
would still be vulnerable to attacks on the physical disk. As a second-tier protection,

we could have the synchronous sentinel guarding F keep an independent fingerprint

of F elsewhere in the operating system. If F was changed illicitly, the sentinel would

instantly detect it unless the fingerprint was also changed. Since the fingerprint is

provable impossible to forge with accuracy greater than 2−m unless the key K is

49

known, it is impossible for the opponent to change F without eventually coming

to the attention of the sentinel.

5.3 System Call Fingerprints

A wide class of existing bugs in Berkeley UNIX 4.2 are based on race conditions.

In UNIX, system calls such as “read file”, “write file”, and “change protection” are

not atomic but concurrent. Because of the way the UNIX kernel is structured, it

is very difficult to detect all possible race conditions.

One race condition exists between the link system call and the chmod system

call. chmod changes the protection on a file F . In UNIX 4.2, security is enforced by

only allowing the owner of F or the system-user root to access F , so it first checks

ownership information and then changes the protection. link makes a new file

system entry F ′ and then sets it to point to F . Since a link call merely establishes

a link, no special security rights are required to execute it.

By running the two system calls simultaneously, it is possible for an opponent

to gain access to a file he does not own. Let F be owned by U . An opponent U ′

might gain access to F by executing these two system calls simultaneously:

1. link(F ′,F). Link file F to F ′.

2. chmod(0666,F ′). Make F ′ publicly available for reading and writing.

If these system calls are executed, the following chain of events sometimes will

occur:

1. link creates a dummy entry F ′ owned (temporarily) by U ′.

2. chmod checks F ′ to see whether U ′ is allowed to change its protection. Since

U ′ temporarily owns F ′, chmod approves the action.

50

3. link completes the pointer from F ′ to F . At this point U ′ can not access F
or F ′ since those files are owned by U .

4. chmod, having already approved rights to change the protections to F ′, goes

ahead and makes that file publicly readable and writeable. Since F ′ is now a

pointer to F , this makes F publicly readable and writeable, and thus U ′ can

access that file.

We found this bug and several other bugs in UNIX 4.2 by inserting fences in

the operating system which fingerprint system call requests at the top level of the

kernel and at the driver level. The fingerprints contain the text of the request and

the security data (process privilege information and file protection information)

associated with the processes and files. If the fingerprints do not match, the fence

determines that race conditions must exist in the kernel and halts the processor. In

the above example, the protection information associated with F ′ changes from the

top level of the kernel and the driver level and hence the fingerprints are different.

While our current library of fences is not yet sufficient to validate a secure

system by itself, we believe that the technique can be used in conjunction with

more traditional validation methods to provide a very high degree of confidence in

security software.

51

Chapter 6

Bibliography

[Bashe 86] Bashe, C. J., L. R. Johnson, J. H. Palmer, and E. W. Pugh. IBM’s

Early Computers MIT Press, Cambridge, Massachusetts, 1986.

[Benzel 84] “Analysis of a Kernel Verification.” Proceedings of the 1984 Symposium

on Security and Privacy, Oakland, California, May 1984, pp. 125–131.

[Daley-Dennis 68] Daley, R. C., and Dennis, J. B. “Virtual Memory, Processes,

and Sharing in MULTICS.” Communications of the ACM, 11:5, pp. 306–312

(May 1968).

[DeMillo-Lipton-Perlis 79] DeMillo, R. A., R. J. Lipton, and A. J. Perlis. “Social

Processes and Proofs of Theorems and Programs.” Communications of the

ACM, 22:5, (May 1979).

[Dijkstra 68] Dijkstra, E. W. “The Structure of the ‘THE’ Multiprogramming Sys-

tem.” Communications of the ACM, 11:5, pp. 341–346 (May 1968).

[DOD 85] Trusted Computer System Evaluation Criteria. Computer Security Cen-

ter, Department of Defense, Fort Meade, Maryland. (CSC-STD-001-83) March

1985.

52

[Grampp-Morris 84] Grampp, F. T., and R. H. Morris. “UNIX Operating System

Security.” AT&T Bell Laboratories Technical Journal, 63:8b, pp. 1649–1672

(October 1984).

[Jelen 85] Jelen, G. F. Information Security: An Elusive Goal. Program on In-

formation Resources Policy, Harvard University, Cambridge, Massachusetts.

June 1985.

[Lampson 73] Lampson, B. W. “A Note on the Confinement Problem.” Commu-

nications of the ACM, 16:10, pp. 613–615 (October 1973).

[Lampson 74] Lampson, B. W. “Protection.” ACM Operating Systems Review,

19:5, pp. 13–24 (December 1985).]

[McLean 85] McLean, J. “A Comment on the ‘Basic Security Theorem’ of Bell and

LaPadula.” Information Processing Letters, 20:3, pp. 67–70 (1985).

[McLean 86] McLean, J. “Reasoning About Security Models.” Personal Commu-

nication, 1986.

[Organick 72] Organick, E. I. The Multics System. MIT Press, Cambridge, Mas-

sachusetts, 1972.

[Rabin 81] Rabin, M. O. “Fingerprinting by Random Polynomials.” TR-15-81.

Center for Research in Computing Technology, Harvard University, Cam-

bridge, Massachusetts. 1981.

[Ritchie-Thompson 74] Ritchie, D. M. and Thompson, K. “The UNIX Time-Sharing

System.” Communications of the ACM, 17:7, pp. 365–375 (July 1974).

[Schroeder-Saltzer 72] Schroeder, M. D., and J. H. Saltzer. “A Hardware Archi-

tecture for Implementing Protection Rings.” Communications of the ACM,

15:3, pp. 157–170 (March 1972).

53

[Shamir 79] Shamir, A. “How to Share a Secret.” Communications of the ACM,

22:11, pp. 612–613 (November 1979).

[Thompson 84] Thompson, K. “Reflections on Trusting Trust.” Communications

of the ACM, 27:8, pp. 761–763 (August 1984).

[Wulf-Levin-Harbison 81] Wulf, W. A., R. Levin, S. P. Harbison. HYDRA/C.mmp.

McGraw-Hill, New York, NY, 1981.

54

