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SUMMARY Auctions are a critical element of the electronic
commerce infrastructure. But for real-time applications, auc-
tions are a potential problem – they can cause significant time
delays. Thus, for most real-time applications, sealed-bid auc-
tions are recommended. But how do we handle tie-breaking in
sealed-bid auctions? This paper analyzes the use of multi-round
auctions where the winners from an auction round participate
in a subsequent tie-breaking second auction round. We perform
this analysis over the classical first-price sealed-bid auction that
has been modified to provide full anonymity. We analyze the
expected number of rounds and optimal values to minimize com-
munication costs.
key words: auction, multiparty computation, anonymity, com-
munication cost

1. Introduction

Auctions are the most important market mechanism
for setting prices. In an auction, a good can be sold
at a price determined by interactions in the market.
The Internet is a prime vehicle for supporting auctions.
Moreover, auctions have been suggested as a basic pric-
ing mechanism for setting prices for access to shared re-
sources, including Internet bandwidth [8], [14]. On the
commercial side, there have been an increasing number
of auctions held for consumer goods such as airplane
tickets, and there are now a number of attempts to
produce commercial auction software.

In addition to the real-time concerns associated
with auctions, there are also privacy concerns. Bid-
ders will bid up to their indifference price — that is,
the price at which they value the good being auctioned.
A corrupt auctioneer can thus derive detailed informa-
tion about the bidders’ preferences and the value they
place on various goods. This is a serious drawback —
consumers are naturally reluctant to give out personal
information over the web, where they can not control
who has access to the information or for what purposes
it can be used. In particular, if an auctioneer can ob-
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serve consumer behavior on an auction of a commodity
good, he can often use shills to bid up a price.

Franklin and Reiter present a protocol for a sealed-
bid auction [11]. Their protocol uses a set of distributed
auctioneers and features an innovative primitive called
verifiable signature-sharing. Their protocol success-
fully prevents a single auctioneer from altering a bid or
throwing an auction to a single bidder. Unfortunately,
their protocol also results in all auctioneers knowing
the full bid of all the bidders at the end of the auction.
The natual question that arises is: can we hold a truly
anonymous auction?

Sealed bid auctions hold a great promise for real-
time applications, since all bidders will submit their
bids simultaneously. Thus, the time required for com-
munication is limited. (Normally, one would term this
as rounds of communication, but to avoid confusion
with rounds of the auction, I will speak of it as phases
of communication.)

Using a powerful set of theoretical computer sci-
ence tools known as secure function computation pro-
tocols we can certainly answer this question affirma-
tively. (Some examples of secure function computation
include Yao’s millionaires protocol [20] which allows two
parties to determine who is richer without revealing
their wealth; Goldreich, Micali and Wigderson’s proto-
cols for bitwise AND and NOT using oblivious trans-
fer [13]; Chaum, Crepeau, and Damgard’s protocol for
computing XOR and AND based on the existence of
secure blobs [6]; Ben-Or, Goldwasser, and Wigderson’s
protocols for arithmetic operations c · x, x + y and x · y
to simulate arbitrary logical circuits [3]; and other pro-
tocols including [2], [4], [5], [18].) While these protocols
can be used to simulate arbitrary circuits, and thus
solve any computable problem, they require extensive
communication and computation. They usually have
a dramatic explosion of communication phases — the
number of communication phases is at least a constant
multiple of the depth of the circuit that performs the
desired function. Clearly, this work, while seminal, is
not immediately applicable to real-time auction appli-
cations.

In this paper, we consider an efficient protocol for
electronic auctions based on a multiparty secret compu-
tation protocol. As with Franklin and Reiter’s protocol,
we use a distributed set of m auctioneers, so that any
m−1 of them can not open a bid. However, in our pro-
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tocol, the value of specific bids are kept secret even at
the termination of the auction. Moreover, each round
of the auction has a constant number of communication
phases.

In each round of the auction, bidders can place
a bid for a constant number of values k. For ex-
ample, if we are bidding for an item, the first round
of the auction may have k = 10 auction values of
$100, $200, $300, $400, . . . , $1, 000. If the first round of
the auction results in the maximum bid being a tie for
a value of, say, $400, then we place bids for a refined
auction of $400, $410, $420, . . . , $490. As we increase
k, the size of each bid increases, but as we decrease k,
we increase the likelihood of multiple rounds. To ana-
lyze the protocol for real-time auctions, we need to find
optimal values of k.

In this paper, we review some styles of auction
and gives fundamental requirements for electronic auc-
tion in Sect. 2. After we describe secure multiparty
computation, the primitive protocol for first-price auc-
tion is defined and demonstrated with a simple exam-
ple. We also present a simplified version of auction
protocol based on pairwise independent random vari-
ables. Based on these protocol, we propose a protocol
for multi-round anonymous auction in Sect. 3. Section
4 gives probabilistic properties of our proposed proto-
col and an expected number of rounds given k and n.
These estimate could be useful for designing a practi-
cal auction system which takes into account not only
security but also efficiency in terms of communication
overhead.

2. Preliminary

2.1 Auction Styles

Auctions can be divided into different types:

• Public bids vs. secret bids
In a public bid auction, all bids are known to other
parties. For example, the classical English auc-
tion, the type one sees at Sotheby’s or Christie’s,
each bidder announces his bid publically. Prices
increase by a ∆ increment.
In a secret bid auction, such as a sealed bid auction
the values of the bids are kept secret. Only the
auctioneer knows the value of the bids.
In this work, we go beyond the secret bid auction,
to consider extremely secret auctions, where the
value of the bid is held private even from the auc-
tioneer.

• Constant time vs. time proportional to price
A constant time auction requires a constant num-
ber of communication phases. For example, in a
sealed-bid auctions, we have one round for bids to
be submitted to the auctioneer, and one round for
the result to be announced.

In contrast, many auction mechanisms, such as an
English auction, or a Dutch auction can require
multiple phases of communication. For example, in
an English auction, the phases of communication
can be proportional to the final price charged for
the item.
In this work, we aspire to find a single round auc-
tion. Unfortunately, if we have a tie, we require an
additional auction round to break the tie. Thus
we have a trade-off between the amount of infor-
mation sent in each auction round and the proba-
bility that the auction will terminate, with no tie,
at that round. This paper studies that trade-off
under a variety of assumptions about the distribu-
tion of bids. In fact, we believe that these assump-
tions may be unrealistic, but the style of analysis
we propose could illuminate techniques for finding
optimal strategies for conducting auctions under
different distributions.
Furthermore, please note that if we allow ourselves
to have run-off rounds of the auction, we are no
longer strictly adhearing to the sealed-bid max
price auction. Instead, we are proposing some-
thing that is effectively a hybrid between tradi-
tional sealed-bid max price auctions and English
auctions.

2.2 Requirements

We specify the following requirements for the auction:

Privacy No auction bid is revealed except for winning
(this includes the case of bids that win a single
round of the auction and tie.)

Anonymity No one (except the seller) can know the
winner.

Non-repudiation No winner can repudiate his bid.
(Otherwise, we could imagine a bidder who placed
multiple bids, and cancelled all but the minimum
required to secure the good.)
(Note that this is weaker definition of non-
repudiation than used Franklin and Reiter; they
use a deposit of digital cash to ensure that payment
can actually be collected from the winner without
his cooperation [11].)

Validity No one can submit invalid bid which affects
the outcome of the auction without being detected.
Note that detection is necessary but not sufficient
for avoiding misbehavior of bidders, because there
are protocols to correct any misbehavior made by
at most t bidder’s conspiracy [3].

Efficiency We want the auction to run fast. To mea-
sure efficiency, we use round complexity to denote
the expected number of rounds in execution of a
protocol and communication complexity is a total
messages in bits sent among bidders during an ex-
ecution [3].
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Fig. 1 Auction model.

3. Protocol Definition

3.1 Model

Suppose that we have n bidders, m auctioneers, and a
seller. We assume that at most t − 1 auctioneers may
be faulty.

3.2 Overview

The basic idea is based on secure multiparty computa-
tion of addition [3], [18].

Intuitively, this protocol works as follows. A bid-
der prepares multiple bids for each of k bidding prices.
If his valuation is higher than a price, he bids his se-
cret ID value; otherwise, he bids 0. With the sequence
of bids as input, the bidders participate in the secure
multiparty computation for addition, which figures out
the sum of some identities of bidders who are willing to
bid at the price. The following three cases happen:

1. When a single bidder is willing to bid at a price,
the result would equal to the winner’s identity. No
one except the winner can know whose identity it
is. Therefore, the anonymity is established in this
protocol.

2. When more than one bidders are willing to bid
at a price, the result is the total of the bidders
identities. By comparing the result with each bid,
bidders can know there is other competitors at the
price.

3. When no one bids at a price, the result is 0. This
always happen at impossibly higher price. No in-
formation is leaked.

Bidder’s secret identities are assigned for each
prices and somehow encrypted with the seller’s pub-
lic key in order to ensure the anonymity. For example,
jth bidder’s identity can be defined by

IDj = EA(DA(j)||r)

where DA(j) is the j’s secret identity digitally signed
by an authority, A, (the seller) as a proof of authorized
bidder, and EA(·) is an encryption function with A’s
public key. The signed identity, DA(j), is necessary to
prevent cheating with anyone else’s identity to bid as
his identity. Concatenated with random padding, r, for
each price, k independent identities are generated. If
the winner’s anonymity against the seller is not neces-
sary, any symmetric key encryption or PIN can be used
instead of digital signature.

In terms of round complexity, all k bids can be sent
in batch, thus one round is involved in this protocol.

3.3 Protocol Definition

Protocol 1
Step 1: Polling. The seller publishes k prices, ω1,

. . . , ωk, for a good.
Step 2: Bidding. The j-th bidder picks k random

polynomials of the form

fj(x) = s + a1x + · · · + atx
t (mod p)

and sends fj(αi) to i-th auctioneers (j ∈ {1, . . . ,
n}, i ∈ {1, . . . , m}). The degree t is a maximum
number of faulty auctioneers to be considered. The
free variable, s, is set to be IDj if and only if he is
willing to bid at a price; otherwise, s = 0.

Step 3: Opening. i-th auctioneer computes F (αi) =
f1(αi) + · · ·+ fn(αi) for each of k prices, and pub-
lishes the result to other auctioneers and the seller.
Given more than t points of the aggregated polyno-
mial, F (α1), . . . , F (αm), each auctioneer uses La-
Grange scheme to solve the simultaneous equations
and obtains the free variable, which gives the sum
of identities of bidders who are willing to bid.

Step 4: Declearing. The seller decrypts the winner’s
bid, IDj∗, with his private key, and retrieves win-
ner’s identity, j∗. After verifying the signature
DA(j∗), the seller awards the item to the winner,
j∗.

3.4 Example

We have three bidders, B1, B2 and B3, and three auc-
tioneers A1, A2 and A3. The range of bidding value is
{0, . . . , 7}. Bidder B1 bids 2 and picks 8 polynomials
such that

f0
1 (0) = ID0

1, f1
1 (0) = ID1

1 , f2
1 (0) = ID2

1,

f3
1 (0) = · · · = f7

1 (0) = 0 (mod p)

where f2
j denotes the j-th bidder’s bid at price 2, and

ID2
j is his 2nd secret identity with different random

padding to others. Suppose that bidder B2 and B3 bids
6 and 5, respectively. After distribution of bids, auc-
tioneer A1 adds three polynomials for each of 8 prices,
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and publishes the result, which is a point of aggregated
polynomial F given by;

F k(α1) = fk
1 (α1) + fk

2 (α1) + fk
3 (α1) (mod p).

for each k ∈ {0, . . . , 7}. In the same way, all auctioneers
publishes the 3 different points of the polynomial F ,
and have the result as follows;

F 0(0) = ID0
1 + ID0

2 + ID0
3 (mod p)

F 1(0) = ID1
1 + ID1

2 + ID1
3 (mod p)

F 2(0) = ID2
1 + ID2

2 + ID2
3 (mod p)

F 3(0) = ID3
2 + ID3

3 (mod p)
F 4(0) = ID4

2 + ID4
3 (mod p)

F 5(0) = ID5
2 + ID5

3 (mod p)
F 6(0) = ID6

2 (mod p)
F 7(0) = 0 (mod p)

This case shows the highest bid is 6 and the winner
is the second bidder. Note that every auctioneer can
know the the highest bid, while no one knowwho is the
winner except the seller and the winner himself.

3.5 Simplified Protocol

Instead of polynomial, we can use m− 1-wise indepen-
dent value to compute the total of each secret.

Protocol 2
Step 2: Bidding. The j-th bidder choose an m × k

random matrixes Bj

Bj =

⎛
⎜⎝

bj
1(1) · · · bj

1(i) · · · bj
1(m)

...
...

...
bj
k(1) · · · bj

k(i) · · · bj
k(m)

⎞
⎟⎠

where each row (l = 1, . . . , k) satisfies

m∑
i=1

bi
l(i) =

{
0 (mod p) if vj < ωl,

IDl
j (mod p) if vj ≥ ωl,

(1)

where vj is j-th bidders valuation. The j-th bid-
der sends i-th auctioneer bj

1(i), . . . , bj
k(i). (Note

that bj
1(j), . . . , bj

k(j) are not sent to other bid-
ders.) After exchange bids, each auctioneer sums
all bids he has recieved for each price and call them
c1(i), . . . , ck(i)(i = 1, . . . , m). All bidders commit
to their bids by publishing the results of a crypto-
graphic hash. The sum for ωl is defined by

cl = cl(1) + · · · + cl(m) (mod p)

where cl(i) = b1
l (i) + · · · + bn

l (i) (mod p).

Step 4: Declaring. Let cj∗ be the highest sum. For
the price ωj∗ , if there exists a single bidder j at the

price, then the sum cj∗ is equal to his secret will-
ingness IDi

j∗ . The winner can know it by checking
cj∗ = IDi

j∗ . The seller decrypts the sum cj∗ and
checks if it is valid or not; if some bidders are tied
with the highest price j∗, the cj∗ is sum of encryp-
tions, which spoils the decryption.

3.6 Secret and Multiple-Rounds Auction

1. Secret English auction
The protocol is run for each bidding price, which is
raised until only one bidder bids to the price. The
difference to the standard English auction is the
result known to bidders is either of the followings:

a. noone bids to the bidding price.
b. there are some (at least one) bids at the price.

In the latter case, all bidders have to hold on the
next round until there is a single bidder bidding to
the price. The bidders who bid the current price
can know whether he is tied with someone else or
not, but he can not know who it is.

2. Secret Dutch auction
As the same way to the English auction, the bid-
ding price is going down until some bidder bids the
value. It is almost same to the standard Dutch auc-
tion, except that the winner can be made anony-
mous.

3. Binary tree auction
Let V be the highest valid bidding value. Split a
set of biding domain, {ω1, . . . , ωV }, into two inter-
val {ω1, . . . , ωV/2}, and {ωV/2+1, . . . , ωV } and use
Protocol 1 or 2 with just one price, ωV/2. If the
higher interval contains more than one bid, repeat
Protocol with restricted domain {ωV/2+1, . . . , ωV };
otherwise, examine the other interval. The auction
ends if a single bidder is left at the higher interval.

4. Hierarchical auction
Generalize “binary tree auction” with k polling
prices defined by V/k, 2V/k, . . . , (k − 1)V/k. We
call ith slot to mean [(i − 1)V/k, iV/k). The pro-
tocol is executed multiple times for each of k slots
in one round. In the next round, the set of prices
is restricted to the previous higest slot for which
some bids were submitted, and this range is di-
vided into k subslots. Figure 2 shows an example
processing the hierarchical auction with k = 3.

The dividing factor, k, in the hierarchical auction
influences the round and the communication casts. As
k increases, the number of round to complete the pro-
tocol is going shrinks. Extremely, maximizing k results
in the least round complexity, but the bandwidth spent
by the protocol grows.

Question: what value of k is likely to optimize
the bit complexity involved the whole auction?
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Fig. 2 The processing in the hierarchical auciton.

4. Estimation

As we have discussed previously, this auction proto-
col has a trade-off. We can allow more fine-grained
bids, but this will (linearly) increase the length of each
bid sent in each round of the auction. We can switch
to more coarse-grained bids, but this can result in the
likelihood of more auction rounds. What is the optimal
tradeoff?

The answer, of course, depends heavily on the
probability distribution of the bids. If we know the
probability distribution, we can figure out the optimal
distribution of bids. (Throughout this discussion, we
are assuming that bids are independent.)

Now, some parties might object. Isn’t it the pur-
pose of an auction to discover the probability distribu-
tion on the bids? If we knew this in advance, we don’t
need an auction; we can simply set a fixed price.

The truth, we believe, lies somewhere in the mid-
dle. In the case of a commodity (such as RSVP’d
network bandwidth) that is repeatedly auctioned, it
will usually be the case that the probability distri-
bution on the bids will move slowly between bids.
If this is the case, then we can set an appropri-
ate probability distribution, and revise it as neces-
sary. Each auction round will use a series of ranges
[0, ω1), [ω1, ω2), . . . , [ωk2 , ωk1), [ωk−1,∞). Now, if our
probability distribution on a bid is g(x), then we want
to set the ω1, . . . , ωk so that∫ ωi+1

ωi

g(x) dx = 1/k.

This in effect, renormalizes g(·) so that it acts like a uni-
form distribution. So, under this assumption, it suffices
to solve the problem for the case of uniform distribu-
tion.

4.1 Number of Tied Winners

Let n be the number of bidders and k be the divid-

Fig. 3 Probability density function of number of tied winners.

ing factor, this gives k slots of [0, V/k), [V/k, 2V/k), . . . ,
[(k−1)V/k, V ) where V is the number of bidding prices.

For example, with letting k = 5, a set of bidding
prices from $1 to $100 is divided into five slots as fol-
lows: [1, 20), [20, 40), [40, 60), [60, 80), [80, 100). Let the
highest bidder be willing to bid $70. The first four suc-
cessive slots have non-zero values, called active bids.
We said the fourth slot, [60, 80), is the highest. The
highest slot always exists and has at least a bid up to
n. The number of bids falling into the highest slot is
identical to the number of winners in a tie. We denote
the number by t.

Under an assumption that bidders choose their
bids independently, we have the probability that a par-
ticular slot has a bid as p = 1/k. Given n and k, the
probability that the highest bid is shared by t bidders
is given by,

Pn,k(t) =
k−1∑
i=0

(
k − i

k

)n (
n
t

) (
1

k − i

)t (
1 − 1

k − i

)n−t

(2)

Figure 3 shows the probability density function of
Pn,k(t). The most likely number of tied winners is 4,
which is approximated by L[T ] = np = n/k = 12/3 =
4.

The condition of auction to be completed is that
the highest slot has just one bid, that is, t = 1. We call
it the auciton succeeds. By letting t = 1, we have the
probability of success from Eq. (2) by

Psuccess(n, k) =
k−1∑
i=0

(
k − i

k

)n

n
1

k − i

(
1 − 1

k − i

)n−1

(3)

and illustrates the probability distribution given k with
regards to n in Fig. 4.
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Fig. 4 Probability distribution of success.

4.2 Approximation of Number of Rounds Involved

How many rounds would be involved in given n and k?
First, recall Eq. (2). It is a sum of sequential terms,

which can be approximated by the first term as follows:

Pn,k(t) �
(

n
t

) (
1
k

)t (
1 − 1

k

)n−t

This is the Binomial distribution with p = 1/k, whose
mean and variance are E[T ] = np, V ar[T ] = np(1 −
p). The expected number of tied winners is np, which
becomes the number of active bidders in the next round.
Thus, we have the expected number of winners of i-th
rounds by

ni = ni−1p = n0p
i (4)

where n0 = n, the original number of bidders at the
first round. The auction ends when just one winner
exists, hence, by solving ni = 1, we have the expected
number of rounds given n and k as follows:

E[R′] = logk(n), (5)

where R′ is a random variable representing number of
rounds, which approximates the true random variable
of number of rounds, R, that is, R � R′.

4.3 Expected Number of Rounds Involved

If we directly obtain this from Eq. (2), a resolution of
the expected number of rounds would be more compli-
cated. First, We estimate the number of tied winners
by E[T ] =

∑ni

t=1 Pni,k(t)t, which then would be the
next round population, ni+1. It decreases exponentially
with the number of rounds and is close to the behavior
of Eq. (4). We show the expected number of winners
tied at the same value in Fig. 5 when n = 100, k = 2.
In the figure, the approximation of tied winner, i.e.,
Eq. (4) is also indicated.

Fig. 5 Expected numbers of winners tied with.

Fig. 6 Probability density function of number of rounds.

Next, recalling Eq. (3), the probability of success,
we have the probability how many rounds are likely to
complete the auction for given n and k by

Pn,k(r)=Psuccess(nr−1, k)=Psuccess(E[Nr−1], k),

where Nr is a random variable taking the population of
r-th round. Figure 6 illustrates the probabilities with
regards to the number of rounds, r. Note that the most
likely number of rounds for k = 2, 15, 30 is equal to

L[R] = �logk(n)�.
Finaly, we have the expected number of rounds

given n and k by

E[R] =
∞∑

r=0

Psuccess(E[Nr−1], k)r,

Figure 7 shows an expected value of R when n = 10.
We also indicate the previous result of the approxima-
tion, E[R′] = logk(n), which is close to the exact result.
When n = k, the approximation gives just one round,
while the exact expected number of rounds is 0.607,
which is lower than 1 in the approximation.
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Fig. 7 The expected numbers of rounds with regards to k.

4.4 Communication Cost

We consider the total bandwidth spent in the hierar-
chical auction and try to figure out the optimum divid-
ing factor, k, given n, m, and bandwidth among them.
Let CA and CB be bandwidth provided at auctioneers
and at bidders. We assume auctioneers (server) has a
higher bandwidth than bidders side. A bidder sends
Pm(k − 1) bits per round in a channel of CB bps,
where P is a size of prime. Note that to reduce the
communication, we use (k − 1) instead of k, because
submitting no bid can be implicitly treated as bidding
the lowest slot. On the other hand, an auctioneer re-
ceives Pn/CA bits per round in a channel of CA bps.
Other than these overheads, we take into account of a
period of time to synchronize all communications for
each round. That takes enormous amount of time, say
L sec. The expected number of rounds decreases as the
dividing factor, k, increases, which makes the cost per
round greater. We use the result of the approximation,
Eq. (5), to estimate an expected value of rounds. The
total time to complete the auction taken by an auction-
eer, TA(k), is given by,

TA(k) =
(

L +
Pn

CA
(k − 1)

)
logk(n)

and the total time spend by a bidder, CB(k), is

TB(k) =
(

L +
Pm

CB
(k − 1)

)
logk(n).

By differentiating both sides with k, we have

d

dk
CA(k) =

(1 − k)nP − LCA

k(log(k))2
+

nP log(n)
log(k)

= 0,

which can be simplified as

LCA

Pn
= k log k log n − k + 1. (6)

The dividing factor k which satisfies this equation min-
imizes the total time to complete the auction. In the

Fig. 8 Time to complete auction with regards to k.

same way, the optimum k in terms of time delay at
bidders can be also derived.

In Fig. 8, we show a particular behavior of TA(k)
and TB(k) for the following parameters;

L = 240s P = 100 bits
CA = 10 Mbps n = 105

CB = 28.8 kbps m = 10

With these constants, the time delay of auctioneer is
greater than that of bidders, so the bottleneck of time
delay is at the auctioneers. By solving Eq. (6), we fig-
ure out the following k∗ at which the time delay of
auctioneer, TA(k∗), minimizes;

k∗ = 72.72.

which results in about 14 minutes to complete auction.

4.5 Normally Distributed Bids

In the above estimate, we assumed the bidders behav-
iors are independent, and the bids are uniformly dis-
tributed. Now, consider a normal distribution, N(µ, σ),
with a mean µ and a standard deviation σ such that
µ = Vr/2, and σ = εVr, where ε is a constant. We
denote by Vr the size of the interval of bidding values
at r-th round, that is, Vr+1 = Vr/k = 1/krV0. While
the variance and mean are setting up for each round,
the fraction of the bids in the highest slot is constant.
Hence, a number of tied winners at r-th round, nr can
be represented recursively by

nr+1 = αknr

where αk is a constant assigned with given k.
For example, letting n = 1000, V = 100, and

ε = 1/6, suppose that 1000 bids are normally dis-
tributed with the mean of µ = 100/2 = 50 and the
standard deviation of σ = 100ε. As commonly known
property of normal distribution, a probability that a
bid will exceed a particular value is characterized by
the standard deviation and the mean value. When



776
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.4 APRIL 1999

Table 1 Probability that a bid falls in the highest slot.

k size per slot µ± αk

2 3 0 5 · 10−1

3 2 1.0σ 1.59 · 10−1

4 1.5 1.5σ 6.68 · 10−2

5 1.2 1.8σ 3.59 · 10−2

6 1 2σ 2.28 · 10−2

Fig. 9 Normally distributed bidders with respect to rounds.

k = 2, the half of the bids fall in the highest slot and the
probability that a random variable of bid, B, becomes
greater than 1/2 is P (1/2 < B) = 0.5 If k = 3, the
highest slot begins from l − l/k, which has a distance
from the mean by V − V/k − µ = V/2 − V/3 = V/6.
We have P (l/6/σ < B) = P (1.0 < B) = 0.157, which
implies that 157 bidders out of 1000 are tied with the
same highest bid in average.

In generally, the constant, αk, are given by Table 1.
Figure 9 illustrates how the number of tied bidders de-
creases as more rounds are used. Given k and n, we
estimate the number of rounds by

r = log(n−1)/ log(αk).

Obviously, the smaller k than for the uniform distribu-
tion would optimize the communication cost, that is,
k = 2.

5. Conclusion

We studied the secret bid multiple-rounds auction
styles. Our proposed protocol achieves anonymity
of bidders with low communication cost. From the
view point of communication efficiency, we studied the
probabilistic properties of the divining factor, k, and
the number of rounds, r and clarified several useful
propeties about bids. Our model of bids are based on
independent bidders, furthermore, we examined a nor-
mally distributed bids model. The main result is that
the optimum dividing factor is k = 2 when we assume
independence of bids.
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