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Abstract

Consider two organizations that wish to privately
match data. They want to find common data el-
ements (or perform a join) over two databases
without revealing private information. This was
the premise of a recent paper by Agrawal, Ev-
fimievski, and Srikant. We show that Agrawal et
al. only examined one point in a much larger prob-
lem set and we critique their results. We set the
problem in a broader context by considering three
independent design criteria and two independent
threat model factors, for a total of five orthogonal
dimensions of analysis.

Novel contributions include a taxonomy of design
criteria for private matching, a secure data owner-
ship certificate that can attest to the proper own-
ership of data in a database, a set of new private
matching protocols for a variety of different sce-
narios together with a full security analysis. We
conclude with a list of open problems in the area.

1 Introduction

Agrawal, Evfimievski, and Srikant recently presented
a paper [1] that explores the following private match-
ing problem: two parties each have a database and
they wish to determine common entries without reveal-
ing any information about entries only found in one
database. This paper has generated significant interest in
the research community and technical press. While the
Agrawal/Evfimievski/Srikant (AgES) protocol is correct
within in its assumptions, it is not robust in a variety of
different scenarios. In fact, in many likely scenarios, the
AgES protocol can easily be exploited to obtain a great
deal of information about another database. As we discuss

in this paper, the private matching problem has very differ-
ent solutions depending on assumptions about the different
parties, the way they interact, and cryptographic mecha-
nisms available. Our paper discusses flaws in the AgES
protocol, presents that protocol in the context of a frame-
work for viewing private matching and a family of possi-
ble protocols, and gives a number of new techniques for
addressing private matching, including a flexible powerful
Data Ownership Certificate that can be used with a variety
of matching protocols.

The private matching problem is a practical, constrained
case of the more general (and generally intractable) chal-
lenge of secure multi-party computation. Private set match-
ing is a simple problem that is at the heart of numerous data
processing tasks in a variety of applications. It is useful for
relational equijoins and intersections, as well as for full-
text document search, cooperative web caching, preference
matching in online communities, and so on. Private match-
ing schemes attempt to enable parties to participate in such
tasks without worrying that information is leaked.

In this paper we attempt a holistic treatment of the prob-
lem of two-party private matching. We lay out the problem
space by providing a variety of possible design goals and
attack models. We place prior work in context, and present
protocols for points in the space that had been previously
ignored. We also point out a number of additional chal-
lenges for future investigation.

1.1 Scenarios

We begin our discussion with three scenarios, which help
illustrate various goals of a private matching protocol.

Our first scenario comes from multi-party customer re-
lationship management in the business world. Two compa-
nies would like to identify their common customers for a
joint marketing exercise, without divulging any additional
customers. In this scenario, we would like to ensure that
(a) neither party learns more than their own data and the
answer (and anything implied by the pair), and (b) if one
party learns the results of the match, both parties should
learn it. Agrawal, et al. discuss a special instance of this
case in their work [1], which they call semi-honesty, after
terminology used in secure multi-party literature[12]. In
particular, the two companies are assumed to honestly re-
port their customer lists (or, more generally, the lists they

 

  
 
 
 

 



wish to intersect), but may try otherwise to discover ad-
ditional information about the other’s customer list. The
semi-honest scenario here rests on the presumption that a
major corporation’s publicity risk in being detected lying
outweighs its potential benefit in one-time acquisition of
competitive information. Below, we comment further on
difficulties raised by this notion of semi-honesty.

In many cases, we do not desire symmetric exchange of
information. As a second example, consider the case of a
government agency that needs to consult a private database.
Privacy and secrecy concerns on the part of the government
agency may lead it to desire access to the private database
without revealing any information about the nature of the
query. On the other hand, the database owner may only
want to release information on a “need-to-know” basis: it
may be required by law to release the answers to the spe-
cific query, but may be unwilling to release any other infor-
mation to the government. In short, a solution to the situa-
tion should enable the government to learn only the answer
to its query, while the database owner will learn nothing
new about the government. In this asymmetric scenario,
we need a different choice than (b) above.

Finally, we consider a scenario that could involve
anonymous and actively dishonest parties. Online auction
sites are now often used as a sales channel for small and
medium-sized private businesses. Two competing sellers
in an online auction site may wish to identify and subse-
quently discuss the customers they have in common. In
this case, anonymity of the sellers removes the basis for
any semi-honesty assumption, so guaranteed mechanisms
are required to prevent one party from tricking the other
into leaking information.

Each of these examples has subtly different design re-
quirements for a private matching protocol. This paper
treats these examples by systematically exploring all possi-
ble combinations of privacy requirements along a number
of independent design criteria.

1.2 Critique of Agrawal, et al.

In their paper [1], Agrawal, Evfimievski, and Srikant con-
sider the first scenario listed above, building on an earlier
paper by Huberman et al.[13]. Here is an informal sum-
mary of the AgES Set Intersection Protocol result; we dis-
cuss it more formally below in Section 3.

Agrawal, et al. suggest solving the matching problem
by introducing a pair of encryption functions

�
(known

only to � ) and
���

(known only to � ) such that for all� ,
�����	��� ��
�
� �	������� ��
�
 . Alice has customer list �

and Bob has customer list � . Alice sends Bob the mes-
sage

��� � 
 ; Bob computes and then sends to Alice the
two messages

��������� � 
�
 and
�	��� � 
 . Alice then applies�

to
�	��� � 
 , yielding (using the commutativity of

�
and�	�

) these two lists:
��������� � 
�
 and

�	������� � 
�
 . Alice com-
putes

��������� � 
�
�� �	������� � 
�
 . Since Alice knows the or-
der of items in � , she also knows the the order of items in�	������� � 
�
 and can quickly determine � � � .

Two main limitations are evident in this protocol. First,

it is asymmetric: if we want both parties to learn the answer,
we must trust Alice to send � � � to Bob. This asymmetry
may be acceptable or even desirable in some scenarios, but
may be undesirable in others.

Second, we find the AgES assumption of semi-honesty
to be hard to imagine in a real attack scenario. Any at-
tacker who would aggressively decode protocol messages
would presumably not hesitate to “spoof” the contents of
their queries. If we admit the possibility of the attacker
spoofing queries, then the AgES protocol is not required; a
simpler hash-based scheme suffices. In this scheme (also
suggested by Agrawal, et al.) the two parties hash the el-
ements of their lists � � � 
 and � � � 
 and then compute the
intersection of those two lists of hashes. Later in this paper,
we augment this hash-based protocol with an additional
mechanism to prevent spoofing as well.

1.3 A Broader Framework

Below, we consider a broader framework for thinking about
private matching.

First, we break down the protocol design space into
three independent criteria :

Design Criteria
� protocols that leak no information (strong) vs. proto-

cols that leak some information (weak)

� protocols that protect against spoofed elements (un-
spoofable) vs. protocols that are vulnerable (spoofa-
ble).

� symmetric release of information vs. asymmetric re-
lease (to only one party).

We will also consider two different dimensions for
threat models:

Threat Models
� semi-honest vs. malicious parties

� small vs. large data domains

We discuss the design criteria in more detail in the next
section and cover the threat models below in Section 3.

2 Problem Statement
We define the private matching problem between two par-
ties as follows. Let the two parties Alice and Bob have
respective sets � and � of objects in some domain � . Sup-
pose Alice wants to pose a matching query ����� to Bob.
We call Alice the initiator of the query and Bob the recip-
ient of the query. We say � is valid if ����� and spoofed
otherwise. A matching computes �  � � � or  ; note
that  is a message distinguishable from the set ! , and can
be thought of as a warning or error message.

We elaborate upon the three design criteria for private
matching described in the previous section:



� We define a matching protocol to be unspoofable if it
returns  or � � � � � for all spoofed � . Otherwise
it is spoofable.

� We say that a matching protocol is strong if any party
can learn only: � , any information that can be de-
rived from � , and this party’s input to the protocol,
and nothing else; otherwise the protocol is weak with
respect to the additional information learnable.

� We say that a matching protocol is symmetric if both
parties will know the same information at any point in
the protocol. Otherwise it is asymmetric.

For each of these three dimensions, a bit more discus-
sion is merited. We begin with the strong/weak dichotomy.
After executing a protocol, a party can derive information
by computing functions over its input to the protocol and
the protocol’s output. An example of such derived informa-
tion is that a party can learn something about what is not in
the other party’s set, by examining its input and the query
result. Since any information that can be computed in this
way is an unavoidable consequence of matching, we use �
to denote both � and the derived information throughout
our paper. Note that weak protocols correspond to the no-
tion of semi-honesty listed above — weak protocols allow
additional information to be leaked, and only make sense
when we put additional restrictions on the parties — typi-
cally, that they be semi-honest. In contrast, strong protocols
allow malicious parties to exchange messages. Note further
that we could define a variety of levels of weak protocols.
For example, we define a size leaking weak protocol to be
one in which the only information leaked is � , the size of
� and � , and information that can be derived from these
and a party’s input. These size leaking weak protocols will
be used later in this paper.

For the spoofable/unspoofable dimension, there are sce-
narios where a protocol that is technically spoofable can
be considered effectively to be unspoofable. To guarantee
that a protocol is unspoofable, it requires the protocol to
detect spoofed queries. Given such a mechanism, either
of the following two responses are possible, and maintain
the unspoofable property: (a) returning  , or (b) returning
� � � � � . When a party lacks such a detection mecha-
nism, it cannot make informed decision as when to return
 . However, in some situations, the party may be expected
to return the set � � � � � with high probability, regardless
of whether the query is spoofed or not. This may happen
when it is very difficult to spoof elements. We will give an
example of this scenario later.

It is also useful to consider the the issue of symmetry vs.
asymmetry for the threat models covered in Section 3. In
the semi-honest model, parties follow the protocols prop-
erly, and so symmetry is enforced by agreement. However,
in a malicious model, the parties can display arbitrary ad-
versarial behavior. It is thus difficult to force symmetry,
because one party will always receive the results first. (A
wide class of cryptographic work has revolved around “fair

exchanges” in which data is released in a way that guarran-
tees that both parties receive it, but it is not clear if those
concepts could be efficiently applied in the private match-
ing application.)

2.1 Secure Multi-party Computation

The private matching problem is a special case of the more
general problem from the literature called secure multi-
party computation. We now give a brief introduction to se-
cure multi-party computation in the hope of shedding light
on some issues in private matching. In a secure � -party
computation, the parties wish to compute a function

�
on

their � inputs. In an ideal model where a trusted party ex-
ists, the � parties give their inputs to the trusted party who
computes

�
on their inputs and returns the result to each of

the parties. The results returned to each party may be dif-
ferent. This ideal model captures the highest level of secu-
rity we can expect from multi-party function evaluation[7].
A secure multi-party computation protocol emulates what
happens in an ideal model. It is well-known that no se-
cure multi-party protocol can prevent a party from cheat-
ing by changing its input before a protocol starts[12]. Note
however, that this cannot be avoided in an ideal model ei-
ther. Assuming the existence of trapdoor permutations, one
may provide secure protocols for any two-party computa-
tion [19] and for any multi-party computation with honest-
majority[11]. However, multi-party computations are usu-
ally extraordinarily expensive in practice, and impractical
for real use. Here, our focus is on highly efficient protocols
for private matching, which is both tractable and broadly
applicable in a variety of contexts.

3 Threat Models

We identify two dimensions in the threat model for private
matching. The first dimension concerns the domain of the
sets being matched against. A domain can be small, and
hence vulnerable to an exhaustive search attack, or large,
and hence not vulnerable to an exhaustive search attack.

If a domain is small, then an adversary Max can enu-
merate all the elements in that domain and make a query
with the entire domain to Bob. Provided Bob answers the
query honestly, Max can learn the entirety of Bob’s set with
a single query. A trivial example of such a domain is the
list of Fortune 500 companies; but note that there are also
somewhat larger but tractably small domains like the set of
possible social security numbers.

A large uniformly distributed domain is not vulnerable
to an exhaustive search attack. We will refer to this type of
domain simply as large in this paper. An example of such
a domain is the set of all RSA keys of a certain length. If a
domain is large, then an adversary is limited in two ways.
First, the adversary cannot enumerate the entire domain in
a reasonable single query, nor can the adversary repeatedly
ask smaller queries to enumerate the domain. In this way
the adversary is prevented from mounting the attack de-
scribed above. Second, it is difficult for her to query for an



arbitrary individual value that another party may hold, be-
cause each party’s data set is likely to be a negligible-sized
subset of the full domain.

The second dimension in the threat model for private
matching captures the level of adversarial misbehavior. We
distinguish between a semi-honest party and a malicious
party [12]. A semi-honest party is honest on its query or
data set and follows the protocol properly with the excep-
tion that it keeps a record of all the intermediate computa-
tions and received messages and manipulates the recorded
messages in an aggressively adversarial manner to learn ad-
ditional information.1 A malicious party can misbehave in
arbitrary ways: in particular, it can terminate a protocol at
arbitrary point of execution or change its input before en-
tering a protocol. No two-party computation protocol can
prevent a party from aborting after it receives the desired
result and before the other party learns the result. Also no
two-party computation protocol can prevent a party from
changing its input before a protocol starts.

Hence we have four possible threat models: a semi-
honest model with a small or large domain, and a malicious
model with a small or large domain. In the rest of the pa-
per, we base our discussion of private matching protocols
in terms of these four threat models.

3.1 Attacks

In this section we enumerate a number of different attacks
that parties might try to perform to extract additional in-
formation from a database. In the scenarios below, we use
the notation � and � to denote parties, and � is trying to
extract information from � ’s database.

� Guessing attack: In this attack, the parties do not
deviate from the protocol. However, � attempts to
guess values in � ’s database and looks for evidence
that those values occur in � ’s database. Typically,
� would guess a potential value in � ’s database,
and then look for an occurrence of the hash in � ’s
database. Alternatively, � could attempt to decrypt
values in a search for an encrypted version of a par-
ticular potential value in � ’s database (following the
pattern in the AgES protocol.) Because of the limita-
tions of this type of attack, it is best suited when the
domain of potential values is small. (A variant of this
attack is to try all potential values in the domain, an
exhaustive search attack.)

� Guess-then-spoof attack: In this attack, the parties
deviate from the protocol. As in the guessing attack,
� generates a list of potential values in � ’s database.
In the spoofing attack, � runs through the protocol
pretending that these potential values are already in
� ’s database. Thus � will compute hashes or encrypt,
and transmit values as if they really were present in
� ’s database. Because this attack involves a guessing

1In the introduction, we argued that semi-honest protocols were unre-
alistic in many situations. However, for completeness we will consider
them here.

element, it is also well suited for small domains of po-
tential database values (e.g. social security numbers,
which are only 10 digits long).

� Collude-then-spoof attack: In this attack, � receives
information about potential values in � ’s database by
colluding with outside sources. For example, perhaps
� and another database owner � collude by exchang-
ing their customer lists. � then executes a spoofing
attack by pretending that these entries are are already
on its list. As in guess-then-spoof attack, � computes
hashes or encryptes, and transmits values as if they
were really present in � ’s database. Since � is de-
riving its information from third party sources in this
attack, it is suited for both small and large domains
of potential database values. (N.B.: we group both the
guess-then-spoof attack and the collude-then-spoof at-
tack together as instances of spoofing attacks. Spoof-
ing attacks occur in the malicious model; in the semi-
honest model they can not occur.)

� Hiding attacks: In a hiding attack, � only presents
a subset of its customer list when executing a match-
ing protocol, effectively hiding the unrevealed mem-
bers. This paper does not attempt to discuss defenses
against hiding attacks.

Although we would like to prevent all collusion attacks
involving malicious data owners, there are limits to what
we can accomplish. For example, if Alice and Bob agree
to run a matching protocol, nothing can prevent Bob from
simply revealing the results to a third party Charlie. In this
case, Bob is acting as a proxy on behalf of Charlie, and the
revelation of the results occurs out-of-band from the pro-
tocol execution. However, we would like to resist attacks
where Bob and Charlie collude to disrupt the protocol exe-
cution or use inputs not otherwise available to them.

4 Terminology and Assumptions
We assume the existence of one-way collision resistant
hash functions [16]. A hash function � ��� 
 is said to be one-
way and collision resistant if it is difficult to recover �
given � � � 
 , and it is difficult to find � ��� � such that
� � � � 
  � � � 
 . Let SIGN(

�����
) be a public key signing

function which takes a secret key and data and returns the
signature of the hash of the the data signed by the secret
key. Let VERIFY

���	�
�	�
� 
 be the corresponding public key
verification function which takes a public key, data, and a
signature and returns �
���� if the signature is valid for the
data and ��������� otherwise. For shorthand, we denote � �������
as the digital signature signed by the secret key � � on a
plaintext � . The function !�"$#&% ���	�
� 
 takes an element and
a set and returns ����'� if the element is in the set and ���������
otherwise.

The power function
�)(

Key *,+ Dom *.- Dom *
where

�
defined as follows:

�0/ � � 
21�� / mod 3



1. Alice’s local computation:

(a) ��� (  � � ��� 
 ( ��� ��� .

(b) ��� �	�
 �� * .

(c) � /�� (  � ��/�� ��� � 
 ( � � � ����� .

2. Bob’s local computation:

(a) ��� (  � � ��� 
 ( ��� � � ,

(b) ��� 	 � 
 �� * .

(c) � /�� (  � �0/�� ��� � 
 ( � � � ����� .

3. Alice - Bob: � /��
.

4. Bob’s local computation:
� / ��� / � (  � ��� / � � � / � ��� / � 
�
 ( � / � � � / � � .

5. Bob - Alice: � / �
, � / ��� / �

.

6. Alice’s local computation:

(a) �
� / ��� / � (  ! , � (  !

(b) � / ��� / � (  � � / � ��� / � 
 ( � / � � � / � .

(c) For every
� � � , we compute

� /�� 
�0/�� � � ��� 
�
 , and find the pair

��� /�� ��� /�� � /�� 
 �
� /�� � /��

; given this we let � � / ��� / � (  � � / ��� / �! � ��� �"� /�� � /�� 
 � .

(d) For every
��� ��� / �#� / � 
 � �

� / �#� / �
,$ � !�"�#&% ��� / ��� / � � � / ��� / � 
 , �%'�'& � (  �  � � � .

7. Output � .

Figure 1: AgES protocol

is a commutative encryption [1]:

� The powers commute:
� �)( mod 3 


/
mod 3 1��)( / mod 3 1 � � / mod 3 
�( mod 3

� Each of the powers
� /

is a bijection with its inverse
being

�+*#,/ 1 � /.-0/
mod 1 .

where both 3 and
�  � 33254 
�687 are primes.

We use the notation � �	:9 to denote that element � is
chosen randomly (using a uniform distribution) from the
set 9 .

We assume there exists an encrypted and authenticated
communication channel between any two parties.

5 Techniques
We present four matching protocols in this section: the
trusted third party protocol, the hash protocol, and the
AgES protocol[1]. We also describe a data ownership cer-
tificate mechanism that can be combined with all three pro-
tocols to despoof all of the original protocols even in threat
models with small domains.

5.1 Trusted Third Party Protocol (TTPP)

Suppose Alice and Bob trust a third party Trudy. Alice
and Bob can compute their private matching through Trudy.
Alice (resp. Bob) sends her query � (resp. his data set � )
to Trudy, and Trudy computes the intersection � of the two
sets. Trudy then returns the result to both parties in the
symmetric case, or to one of the parties in the asymmetric
case.

We discuss the security of the TTPP in Section 7.

5.2 Hash Protocol (HP)

In this section, we present a Hash Protocol that do not re-
quire a trusted third party. In the hash protocol, Alice sends
Bob her set of hashed values. Bob hashes his set with the
same hash function, and computes the intersection of the
two sets. Bob may send Alice the result based on their
prior agreement.

We discuss the security of the hash protocol in Section 7.

5.3 The AgES protocol

We gave a summary of the AgES protocol in Section 1.2.
Now we present the complete version of the protocol in
Figure 1. For consistency we adapt this protocol to our
notation, but the essence of the protocol remains the same
as the original paper.

We discuss the security of the AgES protocol in Sec-
tion 7.

6 Data Ownership Certificate (DOC)

An especially difficult attack for private matching to handle
is the spoofing problem. In this section, we propose a new
approach to address spoofing: the use of Data Ownership
Certificates. The idea is to have the creator of data digitally
sign the data in a particular way so that parties that control
databases that include the data can not spoof data. For ex-
ample, consider the case of two companies each of which
wants to find out as much as possible about the other’s cus-
tomer list. If one of the companies has access to a list of
all residents in a particular area, a straightforward spoofing
attack is quite simple — it could simply create false en-
tries corresponding to a set of the residents. If any of those
residents were on the other company’s customer list, pri-
vate matching would reveal their membership on that list.
However, if the companies are obligated to provide digi-
tally signed entries, this type of spoofing would be elim-
inated: neither of the companies would be able to falisfy
entries.

The above sketch is not sufficient, however, because
it still leaves open the possibility that corrupt companies
could broker in digitally signed data entries. For example,
if customer

�
is a legitimate customer of firm ! , we would

have the possibility that ! might try to trade or sell ; ’s dig-
itally signed entry to � . Then � would be able to falsely
claim that ; was a customer and during private matching,



steal information through a spoofing attack. Below, we dis-
cuss an architecture for data ownership certificates that re-
sists both regular spoofing attacks and colluding spoofing
attacks.

Data Ownership Certificates do require more work on
the part of individuals creating data, and they are proba-
bly only practical in the case of an individual who uses his
or her computer to submit information to a database. De-
spite the extra work involved, we believe that data own-
ership certificates are not far-fetched. In particular, the
European Union’s Privacy Directive[9] requires that in-
dividuals be able to verify the correctness of informa-
tion about them and control how that information is dis-
tributed. Data Ownership Certificates give a powerful tech-
nical mechanism supporting that distribution. Similarly,
Agrawal, Kieran, Srikant, and Xu have recently argued for
a type of ”Hippocratic Database” that would provide sim-
ilar functionality.[2] Data Ownership Certificates would
work well with these Hippocratic Databases.

Now we begin a formal presentation of Data Ownership
Certificates (DOC). A Data Ownership Certificate is an au-
thorization token which enables a set owner to prove it is
a legitimate owner of some particular data. The first goal
of the DOC is to prevent spoofing in a small domain. Data
Ownership Certificates prevent spoofing by ‘boosting” the
size of the small domain � to a larger domain � + 9 , where9 is the domain of the DOCs. The intuition is that by ex-
panding the domain, DOCs make the probability of guess-
ing a correct value negligible in the cryptographic sense
and protect database owners from guess-then-spoof attacks.
Now, if an attacker wants to spoof a particular value, e.g.
John’s information, the attacker needs to correctly guess
the associated DOC as well.

A second goal of Data Ownership Certificates is access
control. A DOC is a essentially a non-transferable capabil-
ity issued by the originator of data to a database owner. We
refer to the originators of data as active entities. We say
that an active entity

�
authorizes a set owner � sharing

access to its information % when
�

issues � a DOC ���(
for % . Ideally, a common element between two databases
should be discovered only when both databases have been
authorized with DOCs by the corresponding active entity
for that element. More precisely, we require two security
properties from Data Ownership Certificates:

� Confidentiality: If Bob is not an authorized owner of% , Bob should not be able to learn that Alice possesses% if he runs a matching protocol directly with Alice.

� Authenticity: If Bob is not an authorized owner of %
and Alice is an authorized owner of % , Bob should not
be able to pollute Alice’s matching result, i.e., Bob
cannot introduce % into the matching result.

We find that confidentiality is difficult to achieve. We
thought of two approaches to do the access control. First,
Alice checks whether Bob has the authorization before she
gives an element � to Bob. It seems essential that Alice

obtains some knowledge � that links the access controlled
object � to requester Bob before granting the access. This
requester-specific knowledge � reveals at least partial in-
formation of what element Bob has. It is then only fair that
Bob checks for Alice’s permission to access � . This leads
to an infinite reduction. Second, Alice can give Bob a box
which contains John’s information % . The box is locked by
John. Bob can only open the box if he has the key. This
implies that John uses a lock for which he knows Bob has
the key. This kind of precomputation on John’s part is not
desirable. We leave this as an open problem for future work
and we relax our requirement for access control in this pa-
per. We allow two parties to learn their common element %
if both of them have % and some common nonce for % in-
stead of some requester specific access token. We refer to
the goal of DOC as reduced confidentiality requirement.

6.1 Our instantiation of Data Ownership Certificates

Our instantiation of Data Ownership Certificates consists
of two parts: a common random string and an ownership
attestation component. The common random string serves
the purpose of both boosting the domain and satisfying the
reduced confidentiality requirement. The ownership attes-
tation component satisfies the authenticity requirement.

A Data Ownership Certificate � has the form of� 3 � � # ����� . Each active entity
�

maintains three keys � , ,� � , and 3 � . For each piece of information % originating
from

�
,
�

generates a unique #  ; � � ,
	�	 % 
 where ; ��� 

is a pseudo-random number generator and 	�	 is the concate-
nation function. Assume the output # of ; � � 
 is � bits long
and ; ��� 
 is cryptographically secure, then by the birthday
paradox, one needs to guess approximately  7�� numbers
to have one of them collide with # . If � is large enough,
say 1024, then guessing the correct # is hard. This nonce# will be used in matching protocols instead of the original
data % .

When
�

submits % to some database � , it generates a
signature

�  � % 	�	 � ����� where � is the unique ID of the
database. The signature does not contain the plaintext in-
formation % or � , however anyone knowing the public 3 �
and the plaintext information % and � may verify that � is
indeed an authorized owner of % by verifying the authenti-
cation of

�
using 3 � .

6.2 Certified matching protocols

In this section, we describe the integration of Data Own-
ership Certificates with the proposed protocols from Sec-
tion 5.

We assume that each set element in database � is a
pair

� % � � 
 of data and a Data Ownership Certificate � � 3 � � # ����� where
�  � % 	�	 � � � � . A database owner Alice

now runs a matching protocol with � � # 
 instead of % as the
data.



6.2.1 Certified Trusted Third Party Protocol (CTTPP)

We describe how to use Data Ownership Certificates to ex-
tend the Trusted Third Party Protocol. Let � (resp. � )
be the ID of Alice (resp. Bob). The set that Alice (resp.
Bob’s) sends to Trudy contains elements in the form of
( � � #�� 
 , �

� , 3 ����� ) (resp. ( � � #�� 
 , �
� , 3 ����� )), i.e., triples

of a common nonce, ownership attestation component, and
the corresponding public key. The nonce #	� (resp. #�� ) is
associated with elements 
 (resp.

�
).

When Trudy finds a matching between two common
nonces #�� and #�� , she compares the corresponding pub-
lic keys 3 � � � and 3 � ��� . If they are not the same, then
it means that Alice and/or Bob spoofed the element and
forged the corresponding certificate. Trudy cannot tell
which is the case and she simply returns  to both of
them. If the corresponding public keys are the same, Trudy
runs the verification algorithm on Alice’s and Bob’s owner-
ship attestation component VERIFY

� 3 � � � � 
 	�	 � � �
� 
  ���

and VERIFY
� 3 � ��� �"� 	�	 � � �

� 
  ��� to check whether Alice
and/or Bob are authorized owners of the matching value.
Trudy will find one of the following three cases to be true:

1. � ,  �
���� and � �  ����'�
2. � ,  �
���� and � � � ����'� or vice versa

3. � , � �
���� and ��� � ����'�
If Trudy encounters case (1), then she concludes Alice

and Bob are the authorized owners of the matching ele-
ment. She adds the element to the result set and continues
with the matching computation. We show why this is the
case. Suppose only Bob is the authorized owner of the el-
ement associated with #�� . It is unlikely that Alice spoofs
the common nonce #�� where #��  #�� as discussed in Sec-
tion 6.1. Suppose Alice obtains #�� and the associated DOC
for some other database owner, it is highly unlikely that Al-
ice can generate a public/private key pair that is the same as
the key pair for #�� . By symmetry, it is highly unlikely to be
the case that Alice is the authorized owner of the element
associated with # � and Bob spoofs # � or the public/private
key pair.

If (2) or (3) is the case, it implies Alice and/or Bob
spoofed the nonce and an associated DOC or obtained
her/his element from some other authorized owner(s) and
spoofed a DOC. Trudy returns  for this case.

If Alice (resp. Bob) did not pose a spoofed query and
receives  from Trudy, then she (resp. he) knows that the
other party was not honest.

6.2.2 Certified Hash Protocol (CHP)

The integration of data ownership certificates with the Hash
Protocol is slightly different from that with the Trusted
Third Party protocol. We assume that Alice poses a query
��� each element of which is in the form of

� � � #	� 
 � � � �
where

�
�  �
 	�	 � � ��� � .

Bob hashes each of his common nonces and checks if
it matches one of � � #�� 
 . If he discovers a match between

� � # � 
 and � � # � 
 , then he assumes that the two correspond-
ing ownership attestation components were signed by the
same private key and does the following check. Bob first
looks up his copy of the public key 3 � � for # � and checks
if VERIFY

� 3 ��� �.� 	�	 � ���
� 
 returns ����'� . If it does return�
���� , it means that Alice is an authorized owner of

�
. Bob

may add
�

to the result set � and continue with his match-
ing computation. Otherwise Bob can conclude that Alice
is not the authorized owner of

�
— she either obtained

� � # � 
 and the corresponding certificate from some other
authorized owner of 
 or she was able to guess � � # � 
 and
forged the ownership attestation component. Bob cannot
tell which was the case. Now Bob has the following two
options: (a) return  to Alice, or (b) continue with the
matching computation but omit

�
from the final result. Ei-

ther way the modified protocol satisfies the privacy goal of
being unspoofable and it enables parties to detect cheating.

We need to be careful about the usage of hash functions
in the Certified Hash Protocols. Consider the following two
scenarios. In the first scenario, assume that Alice, Bob, and
Charlie are authorized owners of some customer John’s in-
formation % . Imagine Alice executes the Certified Hash
Protocol with Bob and Charlie and she receives data from
Bob and Charlie. If Bob and Charlie use the same hash
function, e.g. MD5 or SHA1, then Alice may infer that
all three of them have % after the protocol executions with
Bob and Charlie respectively. Alice hashes her own copy
of the nonce # ( associated with % and discovers # � is in the
sets that Bob and Charlies sends to her. The second sce-
nario is that both Bob and Charlie are authorized owners
of % but Alice is not. Furthermore, assume Alice does not
have a copy of % and its DOC from some other authorized
owner. In this case, Alice may infer that Bob and Char-
lie share some common information although she does not
know what it is.

We propose using an HMAC in the Hash Protocol to
prevent the inference problem in the second scenario. An
HMAC is a keyed hash function that is proven to be secure
as long as the underlying hash function has some reason-
able cryptographic strength[4]. An HMAC � ��� 
 

� � ��� opad
� � � ��� ipad

��� 
�

is a function which takes as inputs a secret key � and a text�

of any length; “opad” and “ipad” are some predetermined
padding. The output is an � -bit string where � is the output
of the underlying hash function � ��� 
 .

Using HMAC in the Certified Hash Protocol avoids the
problem in the second scenario as long as each pair of par-
ties uses a different key every time they run the Certified
Hash Protocol. This prevents adversaries from correlating
elements from different executions of the Hash Protocol.

6.2.3 Certified AgES protocol (CAgES)

We need to modify the AgES protocol in Figure 1 in three
ways. First, both Alice and Bob hash and encrypt the com-
mon nonce instead of the actual data. Second, Bob returns
pairs

� �
�
� �0/�� � � � #�� 
�
 � for each of his encrypted elements



� / � � � � # � 
�
 . Third, whenever there is a match, Alice ver-
ifies whether Bob is an authorized owner by checking the
corresponding

�
� .

6.3 Homomorphic DOC (HDOC)

The data ownership certificate as proposed is limited in a
way that it does not enable authorized set owners to match
a subset of the attribute values of an active entity’s informa-
tion. This partial matching property is desirable in many
situations. For example, customer database � is an autho-
rized owner of some customers’ name, credit card number,
and mailing address and customer database � is an autho-
rized owner of the same customers’ name, credit card num-
ber and email addresses. Suppose � and � wish to find
out their common costumer by intersecting their respective
set of credit card numbers. In our proposed DOC scheme,
this is not possible since the common nonce for each of
� ’s customers is generated from names, credit card num-
bers and email addresses while those for � ’s customers are
generated from names, credit card numbers and email ad-
dresses. In this section, we describe a Homomorphic Data
Ownership Certificate scheme that allows all the databases
that are authorized to share information an active entity’s
information 9 to share any subset of 9 where 9 is a set of
strings.

The semantics for a homomorphic data ownership cer-
tificate call for a malleable DOC scheme. Given a DOC� ���� for 9 from an active entity

�
, we would like the set

owner to generate a valid
�� �� � for 9 � where 9 ��� 9 without

the help of
�

.
Homomorphic signatures have the right property we are

looking for. Let � be a generic binary operator. Intu-
itively, a homomorphic signature scheme allows anyone to
compute a new signature Sig

� � � � 
 given the signatures
Sig

� � 
 and Sig
� � 
 without the knowledge of the secret

key. Johnson et. al introduced basic definitions of secu-
rity for homomorphic signature systems and proposed sev-
eral schemes that are homomorphic with respect to useful
binary operators[14].

We are interested in the set-homomorphic signature
scheme proposed in [14] that supports both union and sub-
set operations. More precisely, the scheme allows anyone
to compute Sig

� 9 ,  9 � 
 and Sig
� 9 � 
 where 9 � � 9 , if he

possesses 9 , , 9 � , Sig
� 9 , 
 and Sig

� 9 � 
 .
We now describe our construction for a Homomorphic

Data Ownership Certificate (HDOC) scheme. We need to
modify both the common nonce and the data ownership
component to use the homomorphic signatures. Let 9 be
a set of strings,

�
the active entity that originates 9 , and� � � the signing key exclusively used for 9 . When

�
sub-

mits its information 9 � � 9 to database � , it issues � an
HDOC � ����	�  � 3 � � � Sig ��� � � 9 � 
 � Sig ��� � � 9  � 
 � .

Computing intersection on data with HDOC is straight
forward. Suppose databases � , and � � wish to compute
intersection on their customers’ credit card number. Then
for each customer 
�� ’s HDOC components Sig ���	� � 9��� 
 and
Sig ���	� � 9���  � , 
 , database � , computes Sig

� 9 � � 
 and
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Figure 2: Security goals satisfied by each protocol. (*):
Note that for these examples, we do not have a strong pro-
tocol. However, we do have a size leaking weak protocol
which only reveals information derivable from the result,
the inputs of a given party, and the size of A and B. While
size leaking protocols are weak, they still limit the amount
of information leaked. X

� ,��
denotes a protocol is unspoofa-

ble in the absence of colluding adversaries.



Sig
� 9 ���  � , 
 where 9 ���  � 
 �� � credit card # � . � � does

similar computations. Then � , and � � may run any match-
ing protocol as described in Section 6.2 using the HDOC.

7 Security Analysis

Recall that we consider four threat models in our paper.
They are the malicious model with a large or small domain,
and the semi-honest model with a large or small domain.

We have also identified three types of goals a private
matching protocol can satisfy: strong/weak, unspoofa-
ble/spoofable, and symmetric/asymmetric. In this section,
we analyze the effectiveness of the four private matching
protocols with respect to each of the threat models and de-
termine what privacy goals each protocol achieves.

7.1 The Malicious Model with a Large Domain

We now analyze fulfillment of the security goals of the
three protocols. We give a summary of the results in Fig-
ure 2(d). Note further that all three protocols are spoofable
in the presence of collude-then-spoof attacks. Although a
large domain makes it difficult for an adversary to guess
a possible element, the adversary can include values ob-
tained from another database in the query to increase the
probability of success.

7.1.1 Trusted Third Party Protocol

The Trusted Third Party Protocol (TTPP) is a spoofable,
strong and either symmetric or asymmetric matching proto-
col. TTPP can be either symmetric or asymmetric depend-
ing on whether the trusted third party sends query results
to one or both parties. TTPP is strong because both parties
learn only � and nothing else in a symmetric setting; in an
asymmetric setting, one party learns � and the other party
learns nothing. TTPP is always strong for the same reason
in all four threat models.

7.1.2 Hash Protocol

The Hash Protocol is spoofable, weak, and asymmetric. It
is leaking weak because the recipient of the data set learns
size of it besides the query results � .

Regardless if the adversary is malicious or semi-honest,
the Hash Protocol is always weak since extra information
besides the query result is revealed: either the size of the
query or the size of the data set.

7.1.3 AgES protocol

The AgES protocol is spoofable, weak, and asymmetric.
AgES is weak since the protocol initiator learns the size of
the recipient’s set and the recipient learns the size of the
query. It is asymmetric since the initiator learns the result
of the query and the recipient may or may not receive the
query result.

7.1.4 Certified matching protocols

The CTTPP is unspoofable. If one of the parties spoofs
some element % , the trusted third party can detect it by
checking the ownership attestation component as described
in Section 6.2.1.

Both the CHP and the CAgES are unspoofable in the
absence of colluding adversaries. The common nonces a
DOC prevent a party from guessing the correct nonce asso-
ciated with certain and thus prevents guess-then-spoof at-
tacks.

When there exists colluding parties, CHP and CAgES
are spoofable. Assume Alice colludes with Charlie and Al-
ice obtains data % and the associated DOC from Charlie.
When Bob sends his data set to Alice in an CHP execu-
tion, Alice can learn whether Bob has % or not by hashing
the nonce # ( associated with % and checks if it is in Bob’s
set. Similarly, in a CAgES protocol execution, Alice en-
crypts the nonce # ( and sends it to Bob. Alice will discover
whether Bob has % or not. On the other hand, if Alice and
Bob switch roles in the CHP and CAgES protocol execu-
tions, Alice cannot prove to Bob that she has % since she
does not have a valid ownership attestation component for% .

We present the fulfillment of the goals of the certified
trusted third party protocol and the certified hash protocols,
and the certified AgES protocol in Figure 2(d) for compar-
ison.

7.2 The malicious model with a small domain

With a small domain, a malicious adversary can guess an
element of the other party’s set with non-negligible proba-
bility. An adversary can then launch a spoofing attack and
learn elements of the other party’s set not contained in its
own with non-negligible probability. Therefore, without
modification, all three protocols are spoofable in a small
domain regardless if the threat model is malicious or semi-
honest.

7.2.1 Trusted third party protocol

The trusted third party protocol is strong, spoofable and
either symmetric or asymmetric. The analysis is similar to
that of the large domain presented in Section 7.1.1.

7.2.2 Hash protocol

The hash protocols are weak, spoofable and asymmetric.
The analysis is similar to that of the hash protocol in a large
domain presented in Section 7.1.2.

7.2.3 AgES protocol

The AgES protocol is weak, spoofable and asymmetric.
AgES is spoofable because although the encryption scram-
bles the data, it cannot prevent spoofing attacks. The anal-
ysis for weak and asymmetric is similar to that of a large
domain presented in Section 7.1.3.
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Figure 3: Cost analysis

7.2.4 Certified matching protocols

By combining the DOC with TTPP and HP, we obtain pro-
tocols that satisfy the same privacy goals in a semi-honest
model with small domains as the corresponding protocols
in a semi-honest domain with large domains. In particular,
by adding a DOC component, we strengthen a protocol to
detect spoofed queries to achieve the security goal of being
unspoofable. Now the certified version of a protocol sat-
isfies the same privacy goals in a small domain as the un-
modified version in a malicious model with large domain.
We show these results in Figures 2(d) through 2(c).

7.3 The Semi-honest Model with a Small Domain

All the protocols except for the Trusted Third Party Proto-
col and the AgES Protocol satisfy the same privacy goals
in the Semi-honest Model with small domains as they do in
the Malicious Model with small domains.

In the semi-honest threat model with a small domain,
TTPP is unspoofable, strong, and symmetric/asymmetric.
It is unspoofable since both protocol participants are hon-
est about their query or data set and the trusted third party
only returns the matching result and nothing else to the
participants. The analysis of TTPP being strong and sym-
metric/asymmetric is similar to that of a large domain pre-
sented in Section 7.1.

In the semi-honest threat model with a small domain,
AgES is an unspoofable, asymmetric and size leaking weak
protocol in which the only additional information leaked is
the size of the query and the data set. In [1], Agrawal, et al.
proved that in the semi-honest threat model, the initiator
learns the intersection and the size of the recipient’s set.

The recipient learns only the size of the initiator’s set.

7.3.1 Certified Matching Protocols

By combining the DOC with TTPP and HP, we obtain pro-
tocols that satisfy the same security goals in the malicious
threat model with a small domain as in the malicious threat
model with a large domain. The analysis is similar to that of
the certified matching protocols in the semi-honest model
with a small domain.

7.4 The Semi-honest Model with a Large Domain

The analysis for the semi-honest model with a large domain
is similar to that of the semi-honest model with a small
domain. The only difference is that the HP is size leaking
weak in the large domain and weak in the small domain.

8 Cost Analysis

In this section, we use the following notations. Alice poses
a query � to Bob who has a set � . Let �  � � � be
the query result. Let

�  	 � 	 , �  	 � 	 , and 3  	 � 	 . Let� � be the cost of hashing and �	� be the cost of running the
public key verification algorithm VERIFY

���	�
�	�
� 
 . Let � be
the length of a public key, � be the length of the ownership
attestation component, � be the length of the output of � ��� 
 ,

� be the length of each encrypted code word in the range
of * , and # be the length of each element; all quantities are
in bits. We assume that the set � is larger than the set � ,
i.e.

��� �
, and we assume that ��� � � ��� # .

We present the computational and communication cost
in Figure 3(a) and Figure 3(b) respectively.



The computational costs of the trusted third party and
hashing protocols are dominated by the cost of sorting the
list. For the AgES and certified protocols, the computation
cost is dominated by the encryption/decryption and public
key signature verification respectively. Further details can
be found in Figure 3.

As we may see from Figure 3(b), the communication
cost for any proposed protocol is linear in the size of the
sets being sent. This linear communication cost is the lower
bound of any set intersection protocols which compute the
exact matching[15].

9 Related Work

Private Information Retrieval (PIR) schemes allow a user to
retrieve the " -th bit of an # -bit database without revealing" to the database [8, 6, 3]. These schemes guarantee user
privacy. Gertner et al. introduce Symmetrically-Private In-
formation Retrieval (SPIR) where the privacy of the data,
as well as the privacy of the user is guaranteed[10]. In every
invocation of a SPIR protocol, the user learns only a single
bit of the # -bit database, and no other information about
the data. Practical solutions are difficult to find since the
PIR literature typically aims for very strong information-
theoretic security bounds.

There has been recent work on searching encrypted data
[5, 18] inspired by Song, Wagner, and Perrig’s original pa-
per describing practical techniques for searching encrypted
data[17]. Song et al. proposed a cryptographic scheme to
allow a party � to encrypt and store data on an untrusted
remote server � . � can execute encrypted queries issued
by � and return encrypted results to � .

10 Future Work

This paper explores some issues associated with private
matching. But many areas remain to be explored. Here,
we list a few particularly interesting challenges:

� In this paper, we examined two party protocols. What
are the issues that arise with more complicated proto-
cols with more than two parties?

� There is a basic asymmetry that arises between two
parties where one party knows significantly more than
a second party. Parties that control large sets may be
able to extract significantly more interesting informa-
tion than parties that control small sets. There may
be instances where parties controling small sets can
detect and reject these queries.

� Here, we only consider examples of matching ele-
ments from two sets. More interesting and more far-
ranging examples are possible. For instance, this pa-
per considered listing queries — we actually listed
all the elements held in common between two sets.
We can consider a broader range of functional queries
which return a function calculated over the intersec-
tion of two sets. While a broad literature in statistical

databases exists, the question of functional operations
is a more general notion that deserves further atten-
tion.

� There is an interesting connection between our spoof-
ing discussion and the database literature on updates
through views. The view update literature provides
(constrained) solutions for the following: given a
query on relation instances � and 9 resulting in a set
� , what changes to � and 9 could produce some new
answer � � ? The reasoning used to address that prob-
lem is not unlike the reasoning used to learn informa-
tion via spoofing: by substituting � � for � and ob-
serving the query result � � , what can be learned about9 ? The literature on updates through views is con-
strained because it seeks scenarios where there is a
unique modification to � � 9 that can produce � � . By
contrast, much can be learned in adversarial privacy
attacks by inferring a non-unique set of possible val-
ues for 9 .

� In large distributed systems, it may be desirable to
have a set of peer systems store information in a va-
riety of locations. In this broader distributed system,
can we still guarantee privacy properties.

� In our list of attacks in Section 3.1, we discussed a
hiding attack where a database owner pretends certain
values don’t occur in its database. Can we provide
effective defenses against hiding attacks?
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