
Signed Vector Timestamps�

A Secure Protocol for Partial Order Time

Sean W� Smith J�D� Tygar

October ����� version of February ����

CMU�CS�������

School of Computer Science
Carnegie Mellon University
Pittsburgh� PA �����

Abstract

The language of partial order time expresses the issues central to many problems in asyn�
chronous distributed systems� A secure partial order time service would provide a general
method to develop secure protocols for these problems� In this paper� we sketch out these
issues and develop one such protocol� signed vector timestamps� The majority of this paper
is drawn verbatim from the �rst author	s October �

� thesis proposal� the �rst research
into security issues for non�scalar time services and the original presentation of the SVT
protocol�

This research was sponsored by the Avionics Laboratory� Wright Research and Development Center�
Aeronautical Systems Division �AFSC�� U� S� Air Force� Wright�Patterson AFB� OH ���������� under
Contract F���	��
��C�	���� Order No� ��
�� S� Smith also received support from an ONR Graduate
Fellowship and J�D� Tygar from NSF Presidential Young Investigator Grant CCR�

�
�
��

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the o�cial policies� either expressed or implied� of the U�S� Government�

Carnegie Mellon University Computer Science technical report CMU-CS-93-116



Keywords� security� cryptographic controls� distributed systems� concurrency



�� Introduction

The language of partial order time expresses the issues central to many problems in asyn�
chronous distributed systems� A secure partial order time service would provide a general
method to develop secure protocols for these problems� In this paper� we sketch out these
issues and develop one such protocol� signed vector timestamps� This paper is drawn ver�
batim from the �rst author	s October �

� thesis proposal� ���
� except for minor edits� the
concluding Sections � and �� and this paragraph� The original proposal document gives the
�rst research into security issues for non�scalar time services and the original presentation
of the SVT protocol� �It has recently come to our attention that this protocol was later
independently rediscovered� ���
�

Traditionally� we regard time as a scalar value� totally ordering on the events in a system�
However� the very nature of asynchronous distributed systems suggests that we should use
an order that is partial� not total� so that we can deliberately leave unordered two separated
events that have no knowledge of each other� In this partial order time model� both the
presence and the absence of a path between two events carry meaning�whether one event
necessarily precedes the other� or whether they are concurrent� If we use merely a total
order� we lose the latter information�

Many problems in distributed systems reduce to questions about this partial order� Our
current research explores building tools that explicitly grant these abilities� thus providing
a general method to develop protocols to solve problems in this class�known problems
that currently have separate ad hoc solutions� and also new problems that arise from this
uni�ed framework� Our research also explores making these tools robust for various models
of Byzantine failure and information con�nement� thus� protocols based on these tools will
be secure and robust� since they will inherit the security properties already present in the
toolkit�

�� Partial Order Time

Partial order time provides an alternative way to order events in an asynchronous distributed
system� The goal of the �rst author	s thesis ���
 is to design a family of protocols that allow
processes in a system to examine local events in terms of this time model�

The concept of partial order time solves some of the di�culties introduced by merging
independent timelines into the same totally ordered stream� Using only a partial order on
events lets us ensure that event a happens �after� event b if and only if a can observe the
results of b�total orders only allow the converse direction� Deliberately leaving unordered
two events that lie outside each other	s �observation cone� frees us from the paradoxes of
con�icting knowledge horizons�

�The proposal document is available by request from the School of Computer Science� Carnegie Mellon
University� and also by ftp on lunch�trust�cs�cmu�edu as �usr�smith�public�PROPOSAL�ps�

�



A total order � is consistent with partial order � when a � b �� a � b� �If we think
of orders as a set of ordered pairs� than a consistent total order is just a total order that
contains the partial order as a subset�� Any partial order extends to a consistent total order�
further� the set of consistent total orders uniquely characterizes a partial order� Research on
concurrent systems raises ideas of partial order time precisely because of the need to reason
about this entire set� Total order time�even the total order provided by real time�provides
only one member�

���� Formal De�nitions

We base our partial order time model on Lamport	s� ���
 Formally� let us de�ne an event to
be an instantaneous� atomic action within a system �as per Mattern ���
�� Each event takes
place at one speci�c process� We partition events into three categories�

�� send events� in which one process sends a message to another

�� receive events� in which one process receives a message from another

�� internal events�anything else that happens within a process

Send events take place at the sending process� receive events at the receiving process� Note
that since communication is asynchronous� a send event does not have to be simultaneous
with a receive event� depending on the failure model we use� a send event may not even have
a corresponding receive�

Isolating each event in a distributed system�e�g�� requiring each process to throw away
its state after each event�would render irrelevant any discussion of event ordering� Only
when events can observe the results of previous events does the issue arise of deciding which
events are indeed �previous�� To capture this notion of �previous�� we will construct the
basic partial order �BPO� on events� we will write a��b to indicate the event b potentially
depends on event a� that is� event a must be in the past in the timeline experienced by b�
One interpretation of the BPO is that it expresses the basic �ow of causality� a less mystical
interpretation is that it speci�es some minimum required level of structure in possible time
sequences�

To de�ne the BPO� we proceed from two basic rules�

� Recall that we assume that uniprocessors can totally order their own events� If events
a and b occur on the same process and a precedes b in this order� then let a��b�

� Processes only in�uence other processes by sending messages� and are in�uenced only
by receiving them� So� if a is the sending of a message and b is reception of that
message� then a��b�

Formally� we let the BPO be the transitive closure of this relation� Note that for two
events a and b� exactly one of three cases holds�

�



� a��b� b depends on a

� b��a

� a ���b and b ���a� in this case� we say that a and b are concurrent�

We will write a ��� b to indicate the latter relationship�

���� The Graph Interpretation

Interpreting the BPO as a directed acyclic graph �DAG� makes discussing some of its proper�
ties easier� Construct a node for each event in the system� and draw directed edges according
to the two basic rules above� Then the relation a��b holds exactly when a path exists from
a to b�

Regarding the BPO as a graph�without transitive closure�allows us two di�erent ways
to de�ne restrictions on a BPO� Let S be a subset of the events �perhaps those events
occurring at some subset of the processes��

� We construct the nontransitive restriction of the BPO to S simply by deleting all nodes
not in S� and all edges incident to these nodes�

� We construct the transitive restriction of the BPO by �rst taking the transitive closure
of the graph� and then deleting the nodes and edges not in S� This is the standard
restriction for partial orders�

We will use the notation a
S
��b to indicate that event b depends on a under the nontransitive

restriction of the BPO to S� and a
�S
��b under the transitive restriction�

�� Secure Clocks for Partial Order Time

This paper proposes a secure toolkit for distributed partial clocks� We now o�er a more
detailed discussion on what we mean by this�Section ��� presents the basic issues involved
in de�ning these clocks� and Section ��� examines security and robustness issues�

���� Clocks for Partial Order Time

The problem of robustly implementing a traditional clock on a distributed system �where by
�clock� we refer to a global event counter� although some ideas extend to approximations of
real time� is di�cult but solvable �e�g�� ���
����
����
�� Researchers observe that a necessary
condition for distributed clocks is that the total order calculated be consistent with the BPO�

�



That is� the system computes a time function T � mapping events to integer timestamps� such
that for all events a� b�

T �a� � T �b� �� a��b

However� we stress the importance of a system being able to calculate the BPO exactly�
Our goal is to implement a distributed partial clock� we want a timestamp set� with partial
order � � a function T from events to timestamps satisfying

T �a� � T �b� �� a��b�

and the ability for processes within the distributed system to compute the function T and
the comparison � �

More precisely� we want our partial clock toolkit to enable processes to be able to calculate
these functions for the events they know about� process Pi need only calculate T and � on
some subset Ei containing the events perceivable by Pi� De�ning this notion is a bit tricky�
The weakest nontrivial de�nition follows�

� if event a occurs at Pi� then a � Ei

� if event a is the sending of a message to Pi� which Pi received� then a � Ei

Note that this is nontrivial because� if events a� b are the sending of messages to process Pi
and event c is internal� then answering the questions of whether a��b or c��a may require
information not easily available to this process� This de�nition is still rather weak� suppose
the message sent to process Pi in event a at process Pj contains information about events
preceding a� One could argue that Pi ought to be able order those event too�

� Further�
suppose that event b is the reception at process Pj of message m sent by event a at Pi�
Should b � Ei� Clearly Pi knows that its event a in�uenced b�but does Pi necessarily know
that b exists�

In the spirit of saying that our de�nition of BPO is purely syntactic� we claim that this
weak de�nition of Ei is the corresponding purely syntactic version� As with BPO� we can
construct more complicated extensions of this basic concept by considering other issues�

���� Security Issues

The problems of robustness and security in distributed partial clocks take two forms� fault
tolerance� and some special challenges the nature of partial clocks creates for information
con�nement�

�This fact�that the BPO is transitive but this notion of �perceivability� is not�will cause problems
when consider information con�nement �in Section �����

�



������ Fault Tolerance

A natural question to ask when considering a distributed system that consists of a physically
distributed collection of machines is� what happens when one of them goes awry� In our
distributed systems model we have several elements�

� physical processors

� communication links between processors

� processes running on processors

Physical machines can fail �either gracefully or maliciously�� processes can be downright
malevolent� processes go into suspension while their machine is down� or when they move
operation to a di�erent machine� communication links can deliver messages out of order� or
garbled� or not at all�

�In the remainder of this paper� we make the simplifying assumptions that each process
resides on its on processor� and that the network never corrupts messages��

We would like our distributed partial clocks to maintain some kind of reasonable perfor�
mance in the face of such troubles� We can imagine the standard spectra measuring severity
of individual failures and number of such failures� with a family of implementations that
achieve increasing levels of performance on these spectra� probably by trading o� against
simplicity and e�ciency� and by balancing the various types of robustness�

However� a new issue is exactly what we should regard as �reasonable performance�� The
functions we wish our clocks to calculate capture distributed� global properties� Even though
events a and b might occur in the immediate proximity of a process Pi �e�g�� in the weakest
Ei�� the individual arcs in the BPO graph that cause a��b to hold might be distributed
throughout the entire system� We could require the nonfaulty processes to calculate the
BPO correctly on their perceivable events� less strongly� we could restrict these events to
those belonging to nonfaulty processes �so we absolve nonfaulty Pi from any confusion that a
message from a faulty process causes�� Some of our work already suggests even weaker fault
tolerance� requiring nonfaulty processes only to calculate the nontransitive restriction� of the
BPO to the set of nonfaulty processes� Each of these cases partitions the set of processes� and
hence the set of events� into nonfaulty and faulty categories� but only speci�es how events in
the former should be handled� How nonfaulty processes should deal with bad events raises
another set of research questions�

������ Information Con�nement

To illustrate another set of security issues� we now consider an especially naive implemen�
tation of partial clocks� Suppose a distributed system explicitly maintains the BPO graph�

�Recall the de�nition in Section ����

�



After initialization� each process starts building a linear chain of its internal events� When
sending a message� a process sends along its chain� when receiving a message� a process
incorporates the graph information contained into its own graph� Consequently� whenever
a process executes an event� it knows the entire BPO subgraph induced by taking all the
ancestors of that event� This implementation allows processes to calculate the T and �
relations� However� even aside from questions of e�ciency and fault tolerance� this im�
plementation would be unsatisfactory in two crucial areas� reasons of security policy and
reasons of innate causality may render it undesirable or impossible for a process to know the
complete history behind every event�

Con�nement by policy� Recall in Section ��� we o�ered a weakest de�nition of the events
perceivable by a process� Ei� consisting of the events internal to process Pi and the send
events of messages received by process Pi� In many real instances of distributed systems
we may want to enforce an information con�nement rule such as �process Pi can know
nothing of the global BPO graph except its transitive restriction to Ei� unless authorization
is explicitly granted in some way��

For example� consider distributed workstations in a university environment� Just because
Alice sends a message to Bob does not mean Bob has the right to know everything Alice
has been doing� We need to consider con�nement from the future as well� professors Bob
and Carla may need to have a lengthy discussion of student Alice	s proposal�but naturally
Alice should not be privy to this discussion� or even to the fact that �a lengthy discussion
of my proposal is going on��

We formalize these concepts by introducing two new terms�

� forward con�nement� keeping private information about a process from leaking to
processes it in�uences in the BPO

� backward con�nement� keeping private information about a process from leaking to
processes that have in�uenced it

Enforcing principles of forward and backward information con�nement raises some inter�
esting implementation challenges� Let a be a send event at process P�� and let events b at P�

and c at P� be in the future of a �that is� a��b and a��c� and suppose processes P� and P�

need to know di�erent details of the history of a in order to timestamp b and c� respectively�
Forward con�nement requires that P� not transmit this information with a� But backward
con�nement requires that P� and P� cannot just query P��

Con�nement by structure� Con�nement principles are just that�principles we impose
for reasons external to the basic problem of tracing causality� However� some common
systemmechanisms create information barriers that fundamentally a�ect this basic problem�
Suppose student Alice sends an anonymous suggestion to the suggestion box maintained by
Professor Bob for his class� who acts on this suggestion� Bob	s actions depend on Alice	s

�



suggestion�but he cannot know whose action this suggestion is� Further� the suggestion is
not completely anonymous� for in her later interactions with Bob� Alice knows that Bob	s
actions follow from her actions� Greif ��
 calls this the phenomenon of hidden causality� and
gives a more fundamental example� the relation between V and P operations on a binary
semaphore�

How to resolve the problem of hidden causality in a distributed partial clock is another
research issue we intend to explore� We may need to extend the BPO formalism to make it
su�ciently rich to express all these nuances�

�� The SVT Protocol

���� Overview

The central issue in building a secure distributed partial clock toolkit is how to keep track
of the partial order� Essentially� our BPO is a dynamically changing directed acyclic graph
whose behavior meets the following criteria�

� Monotonicity� As �real
 time progresses� edges and nodes are added� In the basic
problem� nothing is deleted�

� Distribution� New nodes originate from individual processes within a distributed
system� new edges from either individual processes or �in the case of message trans�
mission� from pairs of processes�

Our toolkit needs to allow individual processes to answer connectivity queries about this
graph� and hence must maintain this graph� at least in some virtual form� The distributed
nature of the DAG forces processes to require nonlocal information in order to answer these
queries� The issue of how and when this information should propagate�piggybacked on
system messages� or transmitted only when requested by a query�delineates one axis of
possible implementation approaches�

In this section we outline a starting point for our implementation work� signed vector

timestamps �SVTs�� This approach falls at the �piggyback� end of this axis� The SVT
protocol extends Lamport event counters to provide an implementation of distributed partial
clocks that is moderately robust against Byzantine failure� We conjecture that this may be
the best protection possible if we disallow any special underlying computational structure�

However� this initial approach o�ers two principal drawbacks� ine�ectiveness at enforcing
forward con�nement� and computational ine�ciency in certain scenarios� Analyzing these
drawbacks suggests several new directions for implementation research�

We begin by discussing Lamport clocks �Section ����� then extend them to vectors �Sec�
tion ����� and then turn to SVTs� the protocol� its problems� and the new research avenues
suggested �Sections ��� and �����

�



���� Lamport Clocks

Lamport ���
 discusses the issue of determining the BPO and presents an elegant partial
solution using local event counters� Timestamps sent along with every message keep the
local counters roughly synchronized� and capture a total order� consistent with the BPO�

Formally� each process Pi maintains a local scalar clock Ci� Process Pi marks each event
a that occurs there and each message m it sends with a timestamp C�a� �or C�m��� which
re�ects the current value of the clock Ci� This current value changes with each event a at
Pi� the type of event determines the change�

a is internal C�a��Ci

Ci�Ci � �
a is sending of message m C�a��Ci

C�m��Ci

Ci�Ci � �
a is reception of m Ci�maxfCi�C�m� � �g

C�a��Ci

Ci�Ci � �

These timestamps order events consistently with the BPO�

Theorem � For all events a� b� if a��b then C�a� � C�b��

However� this method has two principal drawbacks�it only produces a total order �the
converse to Theorem � does not hold�� and it is egregiously unsecure� as each process	s clock
is essentially world�writable� For example� suppose process Pi has Ci � s and receives a
message m from process Pj with C�m� � t 	 s� Ostensibly� the timestamp t testi�es that
at least t � s events have occurred in the outside world since Pi last received a message�
But Pi cannot distinguish this presumed scenario from one where malicious process� Pj
arbitrarily in�ates the timestamp� After all� such maliciousness o�ers advantages��

� If Pi lacks a �sensibility check� on its timestamps but plans to interact with process
Pk that does� then Pj 	s action causes Pk to erroneously identify Pi as faulty�

� If processes store timestamps as a �xed�length word with maximum value N � then Pj
could use t � N�� and cause Pi to roll over� either making Pi appear faulty or causing
dangerous anachronism�

�Strictly speaking� it produces a partial order� as events at two processes could receive the same value
timestamp� But we can easily linearize this order by choosing a linear order on the processes and using that
order to break ties�

�We oversimplify here�consider that Pj itself may only be the last link in a chain of honest processes
unwittingly passing on bogus information introduced by the malicious process�

�Again� actual scenarios may be even more complex� Pi may be just a link in a chain to reach the intended
victim process�

�



� If processes store timestamps as unbounded values� Pj could still increase by orders
of magnitude the number of words Pi uses for its clock� This both slows down Pi	s
dealings with its neighbors� and allows Pj to observe the spread of its in�uence�a
violation of backward con�nement�

� If Pj interacts with most processes fairly regularly� then it can render the entire clock
system e�ectively useless by blowing up every timestamp with each message�

���� Extending Lamport Clocks to Vectors

Our SVT implementation extends Lamport counters by making timestamps vectors instead
of scalars� and incorporating digital signatures� These extensions rectify the cited drawbacks�

In the vector timestamp protocol� processes maintain a vector indicating their �knowledge
horizon��the most recent event they �syntactically� know about at each other process�
�Technically� we should note that this structure is not so much a vector but an indexed set�
the length need not be �xed� nor the indices known a priori� This raises some interesting
research questions regarding what to do with lost or missing members�� The SVT protocol
extends this by using public key decryption to authenticate these timestamps�

The vector timestamp protocol exactly captures the BPO� The SVT protocol even allows
the set of honest processes�no matter how few�to calculate the nontransitive restriction
of the BPO despite any action whatsoever by malicious processes� The concept of using
dependency vectors without authentication surfaces in earlier research �e�g�� ���
� ���
� ��
�
��
�� but this paper is the �rst to consider these vectors as an implementation for a general
purpose� secure partial clock toolkit�

The remainder of this section presents the basic protocol� and Sections ��� and ��� add
authentication�

������ The Vector Timestamp Protocol

We begin by discussing the basic protocol� without authentication� Let n be the number
of processes� Each process Pi maintains a local clock Ci� an event counter� Each process
also maintains an n�element vector Vi to keep track of the most recent event it knows about
at every other process� We will use the notation Vi�j� to refer to the jth component of
vector Vi�this component re�ects process Pi	s most current knowledge of process Pj � We
can dispense with Ci altogether� and just store the value as Vi�i�� Let each component of
each Vi be zero initially�

Each process will timestamp its events and outgoing messages with an n�element vec�
tor� To follow our previous notation strictly� we should denote these timestamps by V �a��
however� to make component indexing easier� we will use subscripting instead� Va is the
timestamp on event a� Vm on message m� The following table outlines how processes obtain
these timestamp vectors and update their own vectors� Let event a occur on process Pi�






a is internal Vi�i��Vi�i� � �
Va�Vi

a is sending of message m Vi�i��Vi�i� � �
Va�Vi
Vi�i��Vi�i� � �
Vm�Vi

a is reception of m 
j �� i Vi�j��maxfVi�j�� Vm�j�g
Vi�i��Vi�i� � �
Va�Vi

The reason for the two increments in send events may not be intuitively clear� We
increment the local component before sending a message so that the receiving process can
treat all components equally when maximizing� We increment again so that the subsequent
event at the sending process will not precede the receive event�

We de�ne a natural ordering on the timestamp vectors�

De�nition � For vectors V�W � we say that V � W when 
i V �i� � W �i� and �i V �i� �
W �i��

This ordering exactly captures the BPO�

Theorem � For all events a� b� a��b i� Va � Vb�

������ Security Problems

Consider the timestamp vector Vi on process Pi� It is true that the components Vi�j� are
world�writable �for i �� j� in the sense that a party sending Pi a message can force these
components arbitrarily high� If Pk has Vk�j� � �� �for k� j� i distinct�� then Pk can send a
message to Pi and know that afterward� Vi�j� 
 ��� If Pk is malicious� then it can render
the vector Vi e�ectively useless�

But assume for the moment that everyone is honest� Let � be the initial value of all
vector components� Process Pk can change a component of its vector in only two ways� it
can increment its own component

Vk�k��Vk�k� � �

or it can copy other components from incoming messages

Vk�j��maxfVm�j�� Vk�j�g

The vector on a message is just a copy of the vector at the sending process� Hence we can
observe�

��



Theorem � Let a be an event on process Pi� and let j �� i� Then Va�j� is either � or is a

copy of Vm�j�� where m is a message sent by event b at process Pj� and b��a�

So processes now have some means of detecting when someone is sending them bogus
information in a message	s timestamp� they know that each nonzero component j of the
timestamp should have been originally generated by process Pj �

���� SVT� Adding Signatures to the Vectors

By adding signatures to the vector timestamp scheme� we can add tolerance against Byzan�
tine faults�arbitrary behavior by arbitrary numbers of processes�

Let us assume a public key decryption scheme� where for any x each process Pi can
generate a signature Ei�x� such that

� any process Pj can� given x�i� and y� quickly determine whether y � Ei�x�

� for j �� i� any �nite set X � and any x �� X � no process Pj can calculate Ei�x�� even if
it has an oracle for Ei on X �

We directly extend the basic vector timestamp protocol to produce the secure protocol
SVT� Namely� we just include and check signatures�

Every vector V will now have two �elds in each component�the actual value V �i�� and
the signature V �i��� When a process Pi sends a message m� it sets

Vi�i�
��Ei� Vi�i� �

and then assigns Vm�Vi� When a process Pi receives a message m� it �rst checks the
signatures


j Vi�j�
� � Ej� Vi�j� �

before accepting it� If Pi decides to copy a component from the incoming message

Vi�j��Vm�j�

then Pi copies the signature as well

Vi�j�
��Vm�j�

�

Let H be the set of honest processes� The SVT protocol allows honest processes to
correctly calculate the nontransitive restriction of the BPO�

Theorem � If a
H
��b then Va � Vb�

��



In the other direction� we can show something a bit stronger��

Theorem � Let events a and b occur at processes Pi and Pj � Let i � H� and let Vb have

proper signatures� If Va � Vb then a��b�

A nice thing to observe about SVT is that honest processes do not need to know which
other processes are honest�

���� Problems with the SVT Implementation

The SVT protocol has several drawbacks� For one thing� its tolerance of Byzantine failure
is not ideal�the �reasonable performance� it achieves falls short of what we would have
desired� We suspect that this behavior may be inherent for this style of implementation�
Another problem is that the amount of information that SVT timestamps contain violates
forward con�nement and� in certain situations� might be rather ine�cient�

������ Lost In	uence

In Section � we state that a central goal of this work is to discover a protocol by which an
honest process Pi can determine the BPO among its perceivable events Ei� The SVT protocol
does not achieve this goal� It is true that in SVT� a malicious process cannot overwrite the
clock values of other processes� and cannot generate arbitrarily large values in timestamp
components corresponding to honest processes� However� the protocol does permit spoo�ng
�in the sense of Herlihy and Tygar �

�� During the course of system operation� a process
will receive many timestamp pairs x� Ei�x� for many of the i� A process is supposed to use
the largest x it has received in each component� but it can use any other one it wants to�

For example� suppose Alice and the Bank are honest� but Carla is pretty nasty� Suppose
Alice deposits ��� in her previously empty bank account� and then gives Carla a check for
���� Carla can roll back all her timestamps and quickly cash the check�and the Bank would
believe that Alice	s request depends on Carla	s� and thus will execute Carla	s �rst� getting
Alice into trouble�

The problem remains that any dealings with dishonest or faulty processes will be suspect�
We conjecture� that this behavior is inherent for a large family of implementations� any
protocol built around the following assumptions will risk losing chains of in�uence through
malicious processes�

�Actually� the question of whether Theorem � is stronger than the converse of Theorem � is not answered

so easily� we could interpret proving the latter as being able to distinguish a
H
��b from a��b� which broaches

the awkward topic of honest processes identifying the dishonest ones� Research questions remain here�

�Since the preparation of the original document in 	

	� we have formalized and proved this conjecture�
The proof will appear in the �rst author�s thesis� ��	�

��



� the processes themselves do all the computation�nothing is hidden or unconscious

� no honest process has a right to know anything about the internal events of any other
process

������ Con�nement and E
ciency

Since SVT timestamps are real data packets which entirely determine event ordering� the
SVT implementation easily enforces backward information con�nement� A process examin�
ing a timestamp does not need to bother anyone else� However� a cursory inspection of the
protocol reveals a a fundamental violation of forward con�nement� the fact that processes
must pass on the most recent timestamp components from everyone in the system�

If the distribution of messages is fairly uniform� then SVT is reasonably e�cient� But the
real world contains highly non�uniform scenarios� For example� consider a system consisting
of clusters of workstations at various universities� Most of the communication takes place
within each cluster� so the system graph has two fairly densely connected components� with
only a few edge between the components� If we have n processes and only � � n messages
across this cut� then we	re transmitting much extra data� ��n� when we really only need
O�����

One can argue similarly that much of the timestamp information in a tightly coupled clus�
ter is irrelevant� as everyone knows everything already� This situation is troublesome because
of redundant data� rather than unnecessary data� Some fairly straightforward methods exist
to reduce this waste�consider that process P� can obtain from the timestamps it exchanges
with process P� a good lower bound for each component in P�	s internal vector� and only
needs to transmit the components that exceed this bound�	

�� Future Work

The traditional way to regard time is as a linear order on the events in a system�for any
pair of distinct events e�� e�� one must have happened before the other� By deliberately
leaving unordered events that did not in�uence each other� the BPO opens the door for
more general classes of temporal orderings�

Besides being of theoretical interest �e�g�� Pratt ���
�� these alternative time models have
some exciting implications for asynchronous distributed systems� Partial orders in form or
another lie at the heart of many application problems��
 For example�

� Tracking concurrency� In terms of the partial orders� the distributed snapshot prob�

�After the 	

	 document� we discovered that Singhal and Kshemkalyani �	
� had previously examined
some optimization techniques for vector timestamp protocols�

�	E�g�� �	������ �������� �
�� �	��� �	��� See ���� or ��	� for a more thorough overview�

��



lem reduces to �nding a maximal set of mutually concurrent events�

� Tracking forward in	uence� The problem of rollback requires determining the
future of an event� if event e� is to be undone� then all events e� with e���e� must
be undone� Protocols based on linear time orders only detect a superset of what e�
in�uenced� protocols based on partial orders give the set exactly�

� Tracking reverse in	uence� The problem of orphan detection requires determining�
given event e�� if any aborts preceded it� Protocols based on linear time orders only
detect a superset of what in�uenced e�� protocols based on partial orders give the set
exactly�

In his thesis proposal ���
� the �rst author argues that solving such application problems
requires �rst solving the problem of maintain partial order information� and hence these
solutions to these application problems will automatically inherit the security problems of
partial order clocks� Hence developing a theory of partial order time and encapsulating
its clock primitives and security issues into a single package will provide a framework for
building secure protocols for these general application problems� Forthcoming publications
will expand on this research�

�� References

�� Birman and Joseph� �Exploiting Virtual Synchrony in Distributed Systems�� Eleventh

Symposium on Operating Systems Principles� �������� �
���

�� Birman and Joseph� �Reliable Communication in the Presence of Failures�� ACM

Transactions on Computer Systems� �� ������ February �
���

�� Chandy� The Essence of Distributed Snapshots� Caltech CS TR �
��� March �
�
�

�� Chandy and Lamport� �Distributed Snapshots� Determining Global States of Dis�
tributed Systems�� ACM Transactions on Computer Systems� �� ������ February
�
���

�� Fidge� �Timestamps in Message�Passing Systems That Preserve the Partial Ordering��
��th Australian Computer Science Conference� ������ February �
���

�� Fidge� �Logical Time in Distributed Computing Systems�� IEEE Computer� ��
���������� August �

��

�� Greif� Semantics of Communicating Parallel Processes� Ph�D� thesis� MIT� �
���

�� Herlihy� Lynch� Merritt and Weihl� On the Correctness of Orphan Elimination Algo�

rithms� MIT LCS TM���
� �
���


� Herlihy and Tygar� How to Make Replicated Data Secure� CMU�CS�������� August
�
���

��



��� Johnson� Distributed System Fault Tolerance Using Message Logging and Checkpoint�

ing� Ph�D� thesis� Rice University� �
�
�

��� Lamport� �Time� Clocks� and the Ordering of Events in a Distributed System�� Com�

munications of the ACM� ��� �������� July �
���

��� Lamport and Melliar�Smith� �Byzantine Clock Synchronization�� Third ACM Sym�

posium on Principles of Distributed Computing� �
���

��� Marzullo and Owicki� �Maintaining the Time in a Distributed System�� Second ACM

Symposium on Principles of Distributed Computing� �
���

��� Mattern� �Algorithms for Distributed Termination Detection�� Distributed Comput�

ing� �� �������� �
���

��� Mattern� �Virtual Time and Global States of Distributed Systems�� In Cosnard� et al�
ed�� Parallel and Distributed Algorithms� Amsterdam� North�Holland� �
�
� ��������

��� Peterson� Bucholz and Schlichting� �Preserving and Using Context Information in
Interprocess Communication�� ACM Transactions on Computer Systems� �� ��������
August �
�
�

��� Pratt� �Modeling Concurrency with Partial Orders�� International Journal of Parallel

Programming� �� ���� ������ �
���

��� Reiter and Gong� �Preventing Denial and Forgery of Causal Relationships in Dis�
tributed Systems�� ���� IEEE Symposium on Research in Security and Privacy� �To
appear��

�
� Singhal and Kshemkalyani� An E�cient Implementation of Vector Clocks� Ohio State
TR OSU�CISRC���!
��TR��� November �

��

��� Smith� Secure Clocks for Partial Order Time� Thesis proposal� School of Computer
Science� Carnegie Mellon University� October ��� �

��

��� Smith� Secure Clocks For Partial Order Time� Ph�D� thesis� School of Computer
Science� Carnegie Mellon University� �In preparation��

��� Srikanth and Toueg� �Optimal Clock Synchronization�� Journal of the ACM� �� ����
�������� July �
���

��� Strom and S� Yemini� �Optimistic Recovery in Distributed Systems�� ACM Transac�

tions on Computer Systems� �� �������� August �
���

��


