
Side effects are not sufficient to authenticate software

Umesh Shankar∗

UC Berkeley
ushankar@cs.berkeley.edu

Monica Chew
UC Berkeley

mmc@cs.berkeley.edu

J. D. Tygar
UC Berkeley

tygar@cs.berkeley.edu

Abstract
Kennell and Jamieson [KJ03] recently introduced the
Genuinity system for authenticating trusted software on
a remote machine without using trusted hardware. Gen-
uinity relies on machine-specific computations, incorpo-
rating side effects that cannot be simulated quickly. The
system is vulnerable to a novel attack, which we call a
substitution attack. We implement a successful attack on
Genuinity, and further argue this class of schemes are not
only impractical but unlikely to succeed without trusted
hardware.

1 Introduction
A long-standing problem in computer security is remote
software authentication. The goal of this authentica-
tion is to ensure that the machine is running the correct
version of uncorrupted software. In 2003, Kennell and
Jamieson [KJ03] claimed to have found a software-only
solution that depended on sending a challenge problem
to a machine. Their approach requires the machine to
compute a checksum based on memory and system val-
ues and to send back the checksum quickly. Kennell and
Jamieson claimed that this approach would work well in
practice, and they have written software called Genuin-
ity that implements their ideas. Despite multiple requests
Kennell and Jamieson declined to allow their software to
be evaluated by us.

In this paper, we argue that

• Kennell and Jamieson fail to make their case be-
cause they do not properly consider powerful at-
tacks that can be performed by unauthorized “im-
poster” software;

• Genuinity and Genuinity-like software is vulner-
able to specific attacks (which we have imple-
mented, simulated, and made public);

• Genuinity cannot easily be repaired and any
software-only solution to software authentication
faces numerous challenges, making success un-
likely;

• proposed applications of Genuinity for Sun Net-
work File System authentication and AOL Instant
Messenger client authentication will not work; and

∗This work was supported in part by DARPA, NSF, the US Postal
Service, and Intel Corp. The opinions here are those of the authors and
do not necessarily reflect the opinions of the funding sponsors.

• even in best-case special purpose applications (such
as networked “game boxes” like the Playstation 2
or the Xbox) the Genuinity approach fails.

To appreciate the impact of Kennell and Jamieson’s
claims, it is useful to remember the variety of ap-
proaches used in the past to authenticate trusted soft-
ware. The idea dates back at least to the 1970s and
led in one direction to the Orange Book model [DoD85]
(and ultimately the Common Criteria Evaluation and
Validation Scheme [NIS04]). In this approach, ma-
chines often run in physically secure environments to
ensure an uncorrupted trusted computing base. In
other contemporary directions, security engineers are
exploring trusted hardware such as a secure copro-
cessor [SPWA99, YT95]. The Trusted Computing
Group (formerly the Trusted Computing Platform Al-
liance) [Gro01] and Microsoft’s “Palladium” Next Gen-
eration Security Computing Base [Mic] are now consid-
ering trusted hardware for commercial deployment. The
idea is that trusted code runs on a secure processor that
protects critical cryptographic keys and isolates security-
critical operations. One motivating application is digital
rights management systems. Such systems would allow
an end user’s computer to play digital content but not to
copy it, for example. These efforts have attracted wide
attention and controversy within the computer security
community; whether or not they can work is debatable.
Both Common Criteria and trusted hardware efforts re-
quire elaborate systems and physical protection of hard-
ware. A common thread is that they are expensive and
there is not yet a consensus in the computer security
community that they can effectively ensure security.

If the claims of Kennell and Jamieson were true, this
picture would radically change. The designers of Gen-
uinity claim that an authority could verify that a partic-
ular trusted operating system kernel is running on a par-
ticular hardware architecture, without the use of trusted
hardware or even any prior contact with the client. In
their nomenclature, their system verifies the genuinity of
a remote machine. They have implemented their ideas
in a software package called Genuinity. In Kennell and
Jamieson’s model, a service provider, the authority, can
establish the genuinity of a remote machine, the entity,
and then the authority can safely provide services to
that machine. Genuinity uses hardware specific side ef-

In Proceedings of the 13th USENIX Security Symposium, August 2004, pp. 89-101

fects to calculate the checksum. The entity computes
a checksum over the trusted kernel, combining the data
values of the code with architecture-specific side effects
of the computation itself, such as the TLB miss count,
cache tags, and performance counter values. Kennell
and Jamieson restrict themselves to considering only
uniprocessors with fixed, predetermined hardware char-
acteristics, and further assume that users can not change
hardware configurations. Unfortunately, as this paper
demonstrates, even with Kennell and Jamieson’s as-
sumptions of fixed-configuration, single-processor ma-
chines, Genuinity is vulnerable to a relatively easily im-
plemented attack.

To demonstrate our points, our paper present two
classes of attacks—one class on the Genuinity imple-
mentation as presented in the original paper [KJ03], and
more general attacks on the entire class of primitives
proposed by Kennell and Jamieson. We wanted to illus-
trate these attacks against a working version of Genuin-
ity, but Kennell and Jamieson declined to provide us with
access to their source code, despite repeated queries. We
therefore have attempted to simulate the main features of
Genuinity as best we can based on the description in the
original paper.

The designers of Genuinity consider two applications:

NFS: Sun’s Network File System NFS is a well
known distributed file system allowing entities
(clients) to mount remote filesystems from an
authority (an NFS file server). Unfortunately,
NFSv3, the most widely deployed version, has
no real user authentication protocol, allowing
malicious users to impersonate other users. As a
result, NFS ultimately depends on entities to run
trusted software that authenticates the identities of
the end users. Genuinity’s designers propose using
Genuinity as a system for allowing the authority to
ensure that appropriate client software is running
on each entity. The Genuinity test verifies a trusted
kernel. However, a trusted kernel is not sufficient
to prevent adversaries from attacking NFS: the
weakness is in the protocol, not any particular
implementation. We describe the NFS problem in
more depth in Section 6.5.1.

AIM: AOL Instant Messenger AIM is a text messag-
ing system that allows two entities (AIM clients)
to communicate after authenticating to an author-
ity (an AIM central server). AIM has faced chal-
lenges because engineers have reverse engineered
AIM’s protocol and have built unauthorized entities
which the authority cannot distinguish from autho-
rized entities. Kennell and Jamieson propose the
use of Genuinity to authenticate that only approved
client software is running on entities, thus prevent-
ing communication from unauthorized rogue AIM

client software. As we discuss in Section 6.5.2 be-
low, Genuinity will not work in these applications
either.

In addition to these two applications, we consider a third
application not discussed by Kennell and Jamieson:

Game box authentication Popular set-top game boxes
such as Sony’s Playstation 2 or Microsoft’s Xbox
are actually computers that support network-
ing. They allow different users to play against
each other. However, a widespread community
of users attempts to subvert game box security
(e.g., [Hua03]), potentially allowing cheating in on-
line gaming. One might consider treating the game
boxes as entities and the central servers as authori-
ties and allowing Genuinity to authenticate the soft-
ware running on the game boxes. This is arguably
a best-case scenario for Genuinity: vendors man-
ufacture game boxes in a very limited number of
configurations and attempt to control all software
configurations, giving a homogeneous set of con-
figurations. However, even in this case, Genuinity
fails, as we discuss in Section 7.2 below.

In short, we argue below that Genuinity fails to provide
security guarantees, has unrealistic requirements, and
high maintenance costs. More generally, our criticisms
go to the heart of a wide spectrum of potential software-
only approaches for providing authentication of trusted
software in distributed systems. These criticisms have
important consequences not only for Genuinity, but for
a wide variety of applications from digital rights man-
agement to trusted operating system deployment.

Below, Section 2 summarizes the structure of Genuin-
ity based on Kennell and Jamieson’s original paper. Sec-
tion 3 outlines specific attacks on Genuinity. Section 4
describes a specific substitution attack that can be used
to successfully attack Genuinity and a specific imple-
mentation of that attack that we have executed. Section 5
details denial of service attacks against the current im-
plementation of Genuinity. Section 6 describes a number
of detailed problems with the Genuinity system and its
proposed applications. Finally, Section 7 concludes by
broadening our discussion to present general problems
with software-only authentication of remote software.

2 A description of Genuinity
The Genuinity scheme has two parts: a checksum primi-
tive, and a network key agreement protocol. The check-
sum primitive is designed so that no machine running
a different kernel or different hardware than stated can
compute a checksum as quickly as a legitimate entity
can. The network protocol leverages the primitive into a
key agreement that resists man-in-the-middle attacks.

Genuinity’s security goal is that no machine can com-

pute the same checksum as the entity in the allotted time
without using the same software and hardware. If we
substitute our data for the trusted data while computing
the same checksum in the allowed time, we break the
scheme.

As the authors of the original paper note, the check-
sum value can in principle be computed on any hard-
ware platform by simulating the target hardware and
software. The security of the scheme consequently rests
on how fast the simulation can be performed: if there
is a sufficient gap between the speed of the legitimate
computation and a simulated one, then we can distin-
guish one from the other. Kennell and Jamieson incor-
porate side effects of the checksum computation itself
into the checksum, including effects on the memory hi-
erarchy. They claim that such effects are difficult to sim-
ulate efficiently. In Section 3, however, we present an
attack that computes the correct checksum using mali-
cious code quickly enough to fool the authority. A key
trick is not to emulate all the hardware itself, but simply
to emulate the effects of slightly different software.

Genuinity makes the following assumptions:

1. The entity is a single-processor machine. A
multi-processor machine with a malicious proces-
sor could snoop the key after the key agreement
protocol finishes.

2. The authority knows the hardware and software
configuration of the entity. Since the checksum
depends on the configuration, the authority must
know the configuration to verify that the checksum
is correct.

3. There is a lower bound on the processor speed that
the authority can verify. For extremely slow pro-
cessors, the claim that no simulator is fast enough
is untrue.

4. The Genuinity test runs at boot time so the authority
can specify the initial memory map to compute the
checksum, and so the dynamic state of the kernel is
entirely known.

Genuinity also makes the implicit assumption that all
instructions used in computing the checksum are simu-
latable; otherwise, the authority could not simulate the
test to verify that the checksum result is correct. As we
discuss in Section 4.1.1, the precise-simulation require-
ment is quite stringent on newer processors.

In rest of this section we detail the Genuinity primi-
tive, a checksum computation that the authority uses to
verify the code and the hardware of the entity simul-
taneously. Following that, we review the higher level
network key agreement protocol that uses the checksum
primitive to verify an entity remotely.

2.1 The Genuinity checksum primitive

The checksum computation is the foundation of the Gen-
uinity scheme. The goal of this primitive is that no
machine with an untrusted kernel or different hardware
than claimed will be able to produce a correct checksum
quickly enough.

The details of the test are specified in the paper [KJ03]
for a Pentium machine. First, the entity maps the ker-
nel image into virtual memory using a mapping supplied
by the authority, where each page of physical memory
is mapped into multiple pages of virtual memory. This
makes precomputation more difficult. Next, the author-
ity sends a pseudorandom sequence of addresses in the
form of a linear-feedback shift register. The entity then
constructs the checksum by adding the one-byte data
values at these virtual addresses. The original paper does
not indicate how many iterations are performed during
the course of the test. Between additions, the entity in-
corporates one of the following values into the checksum
(the original paper under-specifies algorithmic details;
see Table 2 for assumptions):

1. Whether a particular Instruction or Data TLB en-
try exists, and if so, its mapping. The original pa-
per does not make clear which potential entries are
queried (in addition, according to the Intel refer-
ence page [Int03], using the special test registers
needed to access the TLB and cache data can lead
to unpredictable results afterwards);

2. Instruction or data cache tags (again, the original
paper does not indicate which cache entries to ac-
cess);

3. A performance counter which measures the number
of branch instructions encountered;

4. A performance counter which measures the number
of instructions executed.

These processor-specific data sources are summarized in
Table 1.

The authority must also compute the checksum. Since
Kennell and Jamieson assume there is no fast simula-
tor, the authority must compute the checksum natively
or simulated it in advance. If the entity calculates the
same checksum as the authority and returns it to the au-
thority quickly enough, the entity is considered genuine.

The maximum allowable time is determined by the
time it takes an “ideal simulator” to complete the task.
An ideal simulator is one that receives the checksum
code in advance, and can optimize the simulation code
to run fast on the native hardware for that particular case.
In the example given, Kennell and Jamieson report that
the 133MHz Pentium legitimate entity took 7.93 seconds
to complete the test, whereas the idealized simulator run-
ning on a 2.4GHz Pentium 4 took 10.72 seconds (35%
longer than native execution); the latter figure was used

Table 1: Processor-specific data included in the checksum. In addition to checksumming over kernel image byte
values, the checksum incorporates these pieces of processor specific data. The function used to incorporate the data
is unspecified in the original paper, so our attack preserves references to this data exactly.

Data source Description

Instruction TLB ITLB miss count, physical page number
Data TLB DTLB miss count, physical page number
Instruction cache Cache line contents (which line is unspecified)
Data cache Cache line contents (which line is unspecified)
Performance counter 1 Number of branches taken
Performance counter 2 Number of instructions executed

as the cutoff time for a response. The unaided (non-
ideal) simulator required 18.53 seconds (134% longer).
Our attack below (Section 3) inserts malicious code,
computes the checksum correctly, and falls within the
cutoff of 35% (Section 4.1.1).

Since the operations of integer addition and exclusive-
or operate in different fields, the operation is nonlinear,
and therefore ex post facto fixing up of the checksum is
difficult. Any modification must be done on the fly, as
the checksum is being computed.

2.2 The Genuinity key agreement protocol
The Genuinity checksum primitive is incorporated into
a network key agreement protocol. At the end of a suc-
cessful completion of the protocol, the authority will
know that

1. The entity is running verified software on verified
hardware, and

2. The entity is the one who passed the test if the key
agreement succeeds.

The authority embeds its public key into the verified
space of the Genuinity test to prevent man-in the mid-
dle attacks.

E → A The entity requests a challenge.
A → E The authority accepts the request, and sends

the client a memory mapping to use during com-
putation of the checksum. The virtual-to-physical
page mappings are randomized, with many map-
pings pointing to the checksum code page. In par-
ticular, 2661 out of the 4096 total mappings pointed
to the physical code page. The code contains many
jumps to itself via alternate page mappings rather
than local, relative jumps. These biases toward the
code page are designed to make modification of the
code more difficult.

E → A The entity notifies the authority of acceptance
and installs the supplied memory mapping.

A → E The authority

1. sends the challenge (public key for the re-
sponse and code for the checksum, both

signed by the authority’s key), and
2. starts the timer.

E → A The entity calculates the checksum using the
initial memory map and the code that the authority
sent. The entity encrypts the checksum and a nonce
with the authority’s public key and sends them to
the authority.

A → E The authority stops the timer and checks if the
checksum is correct. It sends either a qualification
or rejection message to the entity.

E → A The entity uses periodic samples from the hard-
ware cycle counter to generate as a symmetric ses-
sion key. The entity encrypts the session key and
a nonce with the authority’s public key and sends
them to the authority. The session key is never
transmitted over the network.

3 Specific attacks against Genuinity

Attack overview We describe a specific attack on the
Genuinity checksum primitive for the x86 architecture.
We focus on x86 because it is the only one for which the
algorithm is specified in in the original paper.

We were unable to obtain a copy of the code used in
the original Genuinity paper. Therefore, our attacks refer
to the published description of the algorithm; wherever
we have had to make assumptions, we have documented
them (see Table 2).

The premise of Genuinity is that if an entity passes
the test, then that entity is running an approved operat-
ing system kernel on approved hardware. If we can in-
sert a small amount of malicious code while still passing
the test, then we can gain complete control of the sys-
tem without being detected by the authority. In particu-
lar, once our modified checksum code succeeds, we have
subverted the trusted exit path, which normally contin-
ues execution of the kernel. Instead, we may load any
other kernel we wish, or send the session key to a third
party.

checksum

0

0

4095

checksum

0

0

4095

imposter
checksum

imposter
start

Chunk 1

Chunk 22

...
Chunk 1

Chunk 22

...

Chunk 1

Chunk 22

...

Lookup
Code

Figure 1: The original checksum code page, and the malicious checksum code page. The checksum code is
divided into 22 code chunks. The imposter checksum code page replicates the original code entirely, then adds of
imposter lookup code. The imposter lookup code checks each memory reference. If the address is in the imposter
region (between imposter start and the end of the page), the lookup code returns 0 as the byte value. For all
other memory references, the imposter lookup code returns the same value as the original lookup code.

4 Breaking Genuinity: substitution at-
tacks

In this section, we describe two substitution attacks that
work against the current implementation of Genuinity.
The goal of a substitution attack is to modify the check-
sum code without modifying the checksum result. The
first attack appends malicious code at the bottom of the
checksum page. The second attack does not rely on extra
space at the bottom of the checksum page.

4.1 The single page substitution attack
In the single page substitution attack, we append mali-
cious checksum code on the same physical page as the
original code; once it has computed the correct check-
sum, it can modify the machine’s memory at will. Al-
though the malicious code cannot initially be very large
in order for the attack to work, we need only substitute
enough to start loading arbitrary code.

This attack assumes there is extra space on the same
page of physical memory as the checksum code page.
We believe this is a reasonable assumption given Gen-
uinity’s description in the original paper; our own skele-
ton implementation of that algorithm consumed less than
two kilobytes of memory of the four kilobyte page. Fig-
ure 1 illustrates the code page layout.

Table 1 describes processor-specific information that

Genuinity uses to compute the checksum. The original
paper does not specify how the data is incorporated into
the checksum, but our attack is independent of the oper-
ation.

The checksum code is divided into 22 code chunks,
called nodes in the original paper. 16 of these chunks,
the memory chunks, choose a pseudorandom address in
memory and add the value of the byte at that address
to the checksum. The other 6 chunks incorporate the
processor-specific data sources (TLB miss count, cache
tags, etc.) described in Table 1. How the data is incorpo-
rated is not specified, so we preserve references to these
sources exactly.

According to the original Genuinity paper, the check-
sum code fits into a single page in memory. Our imple-
mentation of the checksum code takes about 2KB, leav-
ing about 2KB free with a page size of 4KB. The kernel
used in the original Genuinity implementation is 2MB,
but the virtual memory space over which the checksum
is computed is 16MB since there are many-to-one map-
pings from virtual to physical pages. Since each page is
4KB, there are 4K virtual pages, but only 512 physical
pages. Of the virtual pages, 65% (2661) of these map to
the checksum code page, and about 3 virtual pages map
to each of the other pages. For the sake of analysis, we
assume the empty space on the checksum code page is

Table 2: Assumptions made about the Genuinity algorithm in the absence of specification in the original paper.
Despite repeated requests of the original authors, we were unable to obtain a copy of the code for the Genuinity test.
Our assumptions are used to fill in gaps in the published description.

Value/Behavior Assumption

Layout of checksum code Code at top of page, rest zero-filled
Iterations of compute chunks 16M iterations for each of 22 chunks
Operation to incorporate processor-specific data exclusive-or
Frequency of incorporation of processor-specific data 6x for each iteration through 22 chunks
Which TLB entry or cache entry to examine Unspecified (all values preserved in attack)

in the high memory of the page and is zero-filled. We
discuss alternatives to this in Section 4.3. Figure 1 is our
abstraction of the checksum code page.

The pseudocode representing the memory chunk is

memory_node:
addr = next_LFSR()
sum += memory[addr]

We rewrite the checksum code page maliciously. We
can leave the original checksum code intact, and add im-
poster checksum code in the zero-filled space (Figure 1).
To fool the authority into thinking we are running the
original code, we need to know whether or not the pseu-
dorandom address maps to the checksum code page. If
the address does map to the checksum code page, the
imposter checksum code must return the byte value from
the original code page.

imposter_memory_node:
addr = next_LFSR()
if (is_codepage (addr) &&

offset (addr) > imposter_start)
// Preserve data cache, TLB
temp = memory[addr]
// Add the original byte value
sum += 0

else
sum += memory[addr]

The difficulty lies in is codepage: ideally a bit
vector would represent the virtual memory space, where
biti = 1 if virtual page i maps to the checksum code
page. However, since we cannot make any memory ref-
erences or use any variables without changing the data
cache (Table 1), we must encode this vector in instruc-
tions. The bit vector requires 4K bits, or 128 32-bit
words, to represent the page table. The vector is encoded
by a sequence of 128 code chunks, one for each word.
Each chunk loads one word of the vector into a regis-
ter. We use the page number of the address to calculate
the correct word of the bit vector, and jump to the cor-
responding code chunk. The chunk loads corresponding

immediate word of the vector into a register, and we test
the correct bit to see if the address is in the codepage.

is_codepage:
// $r0 = virtual page number
$r0 = addr >> 12
// $r1 = bit index within the word
$r1 = $r0 & 31
// $r0 = which word to jump to
$r0 = $r0 >> 5
// Jump to the corresponding chunk
jump ($r0*chunk_size) + chunk_base

chunk_base:
// Chunk 1
$r0 = immediate word1
goto end
// Chunk 2
$r0 = immediate word2
goto end
...

end:
/* Test bit $r1 of $r0 */
is_codepage = ($r0 & (1 << $r1))

Note that only two registers are used. Kennell and
Jamieson designed the Genuinity algorithm not to access
any data so as not to pollute the cache. It must therefore
reserve two or three registers for temporary values in cal-
culations. Our modifications do not need any additional
registers for temporaries, and so are largely independent
of the specifics of the Genuinity algorithm.

We have guaranteed that all memory reads will return
the values for the original codepage—all that remains is
to show that we can preserve the other invariants from
Table 1.

1. Instruction TLB. Since the imposter checksum
code resides on the same physical page as the orig-
inal code, and we have not changed any page table
entries, there are no changes to the ITLB. The miss
count and contents are unaffected.

2. Data TLB. The imposter checksum code performs
exactly the same memory loads as the original

code, so there are no changes to the DTLB.
3. Instruction cache. We preserve all cache entries.

Cache lines corresponding to the original code
never get loaded, so for accesses to them we sub-
stitute in the correct physical page number. This
number is unambiguous, since there is only one in-
struction code page (containing both the imposter
code and the original code).

4. Data cache. The imposter checksum code per-
forms exactly the same memory loads as the origi-
nal code, so there are no changes to the data cache.

5. Branch counter. On x86, there is an instruction to
disable performance counters, including the branch
counter. We can simply disable it before taking a
branch that is not present in the original code, and
re-enable it afterwards.

6. Instruction counter. As with the branch counter, it
is possible to disable the instruction counter. Since
we execute the same or more instructions per node,
by disabling and re-enabling the counter at the right
time, we can ensure that it holds the correct value
for the original checksum code.

4.1.1 Prototype implementation

We implemented a rough prototype of our attack as a
Linux loadable kernel module on a 1.5GHz Pentium 4
machine running the 2.4.20-28.9 Linux kernel. We did
not have ready access to a Pentium machine, the pro-
cessor used in the original paper. Using a kernel mod-
ule allowed us to avoid rebooting and to disable inter-
rupts as well as perform other privileged instructions
needed to implement the Genuinity algorithm. Unfortu-
nately, this approach made it impossible to remap the en-
tire memory space; we performed our test in a reserved
block of memory without remapping. Our implementa-
tion was in C with large blocks of inline assembly code
to perform machine-specific instructions and to imple-
ment the is codepage lookup function. Our imple-
mentation iterated 3000000 times over 16 memory reads
interleaved with the processor-specific code chunks.

We learned a number of lessons in reproducing the
Genuinity test. First, the special instructions used in
the original test to access the instruction and data caches
and the TLB directly are not supported on Intel proces-
sors after the Pentium. To the best of our knowledge,
there are no available mechanisms to gain access to these
structures in more recent Intel processors. In addition,
the instruction counter did not return consistent results
between trials. Intel does not guarantee the precision
or reproducibility of performance counters; they are in-
tended to be used as a guide for optimization. We there-
fore focused on two empirically repeatable counters that
approximated those from the original Genuinity descrip-
tion: one that measured ITLB misses and one that mea-

sured the number of conditional branch instructions.
We successfully implemented our attack; we were

able to compute the same checksum using the imposter
code as when using the unmodified checksum code. The
initial version of our attack code simply disabled the per-
formance counters before running any added code, then
re-enabled them before continuing. Unfortunately, the
multipurpose instructions required to do this are serializ-
ing (preventing instruction-level parallelism) on the x86
and cause a significant slowdown; we stress that this is
an artifact of the design of the instruction set architec-
ture. On other architectures that provide dedicated in-
structions for this purpose, performance may be much
better. In response, we modified our attack code to cal-
culate the number of additional branches encountered
and the number of additional ITLB misses generated by
the attack and adjusted the counters appropriately.

The performance of the attack code, while not defini-
tive in the absence of the original Genuinity code, was
encouraging. We ran each test with and without inlining
three times; the standard deviations in both cases were
less than 0.6%.

With inlining turned off in the C compiler, the im-
poster code took 35% longer than the legitimate code
(6.38s vs. 4.71s). This is the same as the 35% slow-
down allowed by Genuinity as determined by the ideal
simulator.

We also ran tests within inlining turned on. Due to
suboptimal inlining by our C compiler, the best per-
formance was obtained with no inlining. However, we
found that inlining all but the bit vector lookup table of
the imposter code could lead to a significant speedup.
Inlining this portion in isolation gave an 18% speedup.
Adding in the time to execute the lookup table yielded a
net 42% slowdown over the fully inlined legitimate code.
While this is not within the 35% boundary, in Section 4.2
we discuss using a higher clock speed machine to reduce
the effective slowdown.

4.2 Improving attack performance
Suppose an adversary has an attack that computes the
checksum while inserting malicious code, but the com-
putation time does not fall inside the cutoff. The easiest
way to improve the checksum computing performance
is to increase clock speed. None of the side effects mea-
sures timing directly, because it is too difficult to get ex-
actly repeatable results. Therefore, if all the CPU param-
eters except for clock speed are fixed, an adversary will
compute the identical checksum value. This is easy to
do, since typically CPUs in the same line are released at
different clock speeds already. Another method would
be to use a higher-performance main memory system,
since main memory reads are the largest component of
the overall time. This modification would not be re-

flected in the checksum value either. It is reasonable to
expect that by claiming to have a 2 GHz Pentium 4 while
actually having a 3 GHz machine—a 50% increase in
clock speed—with an identical memory system, a con-
siderable amount of additional code could be executed
within the required time.

4.3 Countermeasures against substitution
attacks

One can already see a kind of arms race developing: test
writers might add new elements to the checksum, while
adversaries develop additional circumventions. While
it is possible to change the algorithm continually, it is
likely that hardware constraints will limit the scope of
the test in terms of available side effects; all an attacker
must do is break the scheme on some hardware. While
we believe that the attackers’ ability to have the “last
move” will always give them the advantage, we now
consider some countermeasures and examine why they
are unlikely to be significantly more difficult to accomo-
date than those we have already explored.

To prevent the single page substitution attack, Gen-
uinity could fill the checksum code page with random
bits.

Genuinity could also use different performance
counter events or change the set used during the test.
However, since the authority precomputes the checksum
result, Genuinity must only use predictable counters in a
completely deterministic way; we can compute the ef-
fects of our malicious code on such counters and fix
them on the fly. For example, when the imposter check-
sum code starts executing instrutions that do not appear
in the original code, it disables the instruction counters,
and re-enables them after the extra instructions. Another
possible solution which we did not implement is to cal-
culate the difference in the number of instructions exe-
cuted by the imposter code and the original code, and
add this difference to the counter. We can treat other
counters similarly.

At least two other improvements are suggested in the
paper: self-modifying code and inspection of other in-
ternal CPU state related to instruction decoding. Since
our attack code is a superset of the legitimate checksum
code, and since we run on the same hardware (mod-
ulo clock speed) that we claim to have, neither of these
seems insurmountable. Clearly, self-modifying code
would require more sophisticated on-the-fly rewriting of
the attack code, but by simply using a slightly faster ma-
chine (with the same TLB and cache parameters) this is
easily overcome: the attack code is quite modular and
easy to insert. As for inspection of instruction decod-
ing, since the original code is a subset of our code, the
internal state for the original instructions should be the
same.

4.4 Response to countermeasures: the two
page substitution attack

In Section 4.3, we describe some countermeasures Gen-
uinity could take to prevent the single page substitution
attack. We pick the first of these, filling the code page
with random bits, and sketch a two page substitution at-
tack that defeats this countermeasure.

Suppose Genuinity fills the unused code page with
random bits, so the code page is not compressible. Then
the single page substitution attack does not work and the
imposter code must reside on a separate page.

We modify our attack somewhat to accomodate
this change. The first step is to identify an easily-
compressible page of code. Naturally, which particular
page is most easily compressible will depend on the par-
ticular build. Simple inspection of a recent Linux kernel
revealed that not only was the entire kernel compress-
ible by a factor of 3 (the original vmlinux kernel vs.
the compressed vmlinuz file), there were multiple 4K
contiguous regions containing either all zeroes or almost
all zeroes. Let us assume for the remainder of the discus-
sion that the page is all zeroes; it would take only minor
modifications to handle some non-zero values. In ad-
dition, since our hijacked page is referenced very infre-
quently (approximately one data read out of every thou-
sand) that even if it took a little time to “uncompress” the
data, this would likely not increase the execution time
significantly.

The key step is to “hijack” the page and use it to store
our imposter checksum code. The only memory region
this step requires modifying is the hijacked page. This
page, formerly zero-filled, now contains imposter check-
sum code.

The imposter code requires several fixups to preserve
the invariants in Table 1.

The pseudocode looks like this:

imposter_memory_node:
addr = next_LFSR()
if page_number is hijacked_page

// Preserve data cache
temp = memory[addr]
// Add the original byte value
sum += 0

else
sum += memory[addr]

Let us review the checklist of invariants:

1. Instruction TLB. Instructions only come from only
one physical page. To preserve references to the
physical page number, we substitute the physical
address of the original code page. To preserve the
miss count, we can run the original checksum code

in advance and observe the TLB miss count when-
ever it is incorporated into the checksum. Eventu-
ally, this miss count should stabilize. Recall that
the checksum code is divided into 22 code chunks,
each of which refer to up to 2 virtual addresses.
Since the instruction TLB on the Pentium is fully
associative and contains 48 entries, all 44 of these
virtual addresses fit into the ITLB. We estimate that
the TLB should stabilize quickly, so the observation
delay should not add significantly to the total time
between receiving the challenge from the authority
and sending our response. After observing the pat-
tern of miss counts, the imposter checksum code
can use these wherever the TLB miss count should
be incorporated into the checksum.

In our implementation of the single page substi-
tution attack, the ITLB miss count stabilizes after
a single iteration through 22 code chunks, so this
fixup is easy to accomplish.

2. Data TLB. The imposter checksum code performs
exactly the same pattern of memory loads as the
original code, so there are no changes to the DTLB.

3. Instruction cache. We simply fill the cache line with
the contents of the original code page prior to ex-
ecuting the code to incorporate the cache data into
the checksum. To do this, we need to encode the
original checksum code in instructions, just as we
did for the bit vector in the single page attack (Sec-
tion 4.1). We unfortunately cannot read data di-
rectly from the original code page without altering
the data cache.

4. Data cache. There is no change to the data cache,
since the imposter code performs the same memory
loads as the original code.

5. Branch counter, instruction counter. These are the
same as in the original attack.

5 Breaking the key agreement protocol:
denial of service attacks

At the key agreement protocol level, two denial of ser-
vice attacks are possible. The first is an attack against
the entity. Since there is no shared key between the au-
thority and the entity (the entity only has the authority’s
public key), anyone could simply submit fake Genuinity
test results for an entity, thereby causing the authority
to reject that entity and force a retest. A retest is par-
ticularly painful, since the Genuinity test must be run on
boot. Since the Genuinity test is designed to take as long
as possible, this DoS attack requires minimal effort on
the part of the attacker, since the attacker could wait as
long as the amount of time a genuine entity would take
to complete the test between sending DoS packets. It is
possible that Genuinity could fix this problem by chang-
ing the key agreement protocol, but this attack works

against the current implementation.
The second denial of service attack, analyzed in more

depth in Section 6.2, is against the authority. Genuinity
assumes that an adversary does not have a fast simula-
tor for computing checksums, and so neither does the
authority. The authority must precompute checksums,
since the authority can compute them no more quickly
than a legitimate entity. The original paper claims that
the authority needs only enough checksums to satisfy the
initial burst of requests. This is true only in the absence
of malicious adversaries. It costs two messages for an
adversary to request a challenge and checksum. The ad-
versary can then throw away the challenge and repeat
indefinitely. Further, the adversary can request a chal-
lenge for any type of processor the authority supports.
The adversary can choose a platform for which the au-
thority cannot compute the checksum natively. To make
matters worse, the authority cannot reuse the challenges
without compromising the security of the scheme, and
might have to deny legitimate requests.

5.1 Countermeasures against DoS attacks
To avoid the denial of service attack against the client,
Genuinity could assume that the client already has the
public key of the authority.

The second denial of service attack is more difficult
to prevent. The authority could rate limit the number of
challenges it receives, but this solution does not scale for
widely-deployed, frequently used clients such as AIM.

6 Practical problems with implementing
the Genuinity test

We have presented a specific attack on the checksum
primitive, and an attack at the network key agreement
level. Genuinity could attempt to fix these attacks with
countermeasures. However, even with countermeasures
to prevent attacks on the primitive or protocol, Genuinity
has myriad practical problems.

6.1 Difficulty of precisely simulating per-
formance counters

Based on our experience in implementing Genuinity, we
feel that it is likely to become increasingly difficult, if
not impossible, to use many performance counters for a
genuinity test. Not only are many performance counter
values unrepeatable, even with interrupts disabled, they
are the product of a very complex microarchitecture do-
ing prefetching, branch prediction, and speculative exe-
cution. Any simulator—including the one used by the
authority—would have to do a very low-level simula-
tion in order to predict the values of performance coun-
ters with any certainty, and indeed many are not certain
even on the real hardware! We do not believe that such
simulators are likely to be available, let alone efficient,

and may be virtually impossible; if the value of a per-
formance counter is off by even one out of millions of
samples, the results will be incorrect. This phenomenon
is not surprising, since the purpose of the counters is to
aid in debugging and optimization, where such small dif-
ferences are not significant. The only counters that may
be used for Genuinity are those that are coarser and per-
fectly repeatable: precisely the ones on which the ef-
fects of attack code may be easily computed in order to
compensate for any difference. Finally, differences in
counter architecture between processor families can se-
riously hamper the effectiveness of the test. Much of the
strength of Genuinity in the original paper came from its
invariants of cache and TLB information, much of which
are no longer available for use.

6.2 Lack of asymmetry
Asymmetry is often a desirable trait in cryptographic
primitives and other security mechanisms. We want de-
cryption to be inexpensive, even if it costs more to en-
crypt. We want proof verification for proof-carrying
code [Nec97] to be lightweight, even if generating
proofs is difficult. Client puzzles [DS01] are used by
servers to prevent denial of service attacks by leveraging
asymmetry: clients must carry out a difficult computa-
tion that is easy for the server to check.

Genuinity, by design, is not asymmetric: it costs the
authority as much, and likely more (because simulation
is necessary), to compute the correct checksum for a test
as it does for the client to compute it. This carries with
it two problems. First, it exposes the authority to de-
nial of service attacks, since the authority may be forced
to perform a large amount of computation in response,
ironically, to a short and easily-computed series of mes-
sages from a client. Second, it makes it no more expen-
sive for a well-organized impostor to calculate correct
checksums en masse than for legitimate clients or the
authority itself. We shall explore this latter possibility
further in Section 7.2.

6.3 Unsuitability for access control
The authors of the original paper propose to use Genuin-
ity to implement certain types of access control. A com-
mon form of access control ensures that a certain user
has certain access rights to a set of resources. Genuinity
does not solve this problem: it does not have any provi-
sion for authenticating any particular user. At best, it can
verify a client operating system and delegate the task to
the client machine. However, we already have solutions
to the user authentication problem that do not require a
trusted client operating system: use a shared secret, typi-
cally a password, or use a public-key approach. Another
kind of access control, used to maintain a proprietary in-
terest, ensures that a particular application is being used

to access a service. For example, a company may wish to
ensure that only its client software, rather than an open-
source clone, is being used on its instant-messenging
network. In this case, the trusted kernel would presum-
ably allow loading of the approved client software, but
would also have to know which other applications not to
load in order to prevent loading of a clone. The alter-
native is to restrict the set of programs that may be run
to an allowed set, but it is unlikely that any one service
vendor will get to choose this set for all its customers’
machines.

6.4 Large Trusted Computing Base
When designing secure systems, we strive to keep the
trusted computing base (TCB)—the portion of the sys-
tem that must be kept secure—as small as possible.
For example, protocols should be designed such that if
one side cheats, the result is correct or the cheating de-
tectable by the other side. Unfortunately, the entire client
machine, including its operating system, must be trusted
in order for Genuinity to protect a service provider that
does not perform other authentication. If there is a lo-
cal root exploit in the kernel that allows the user to gain
root privilege, the user can recover the session key, im-
personate another user, or otherwise access the service
in an insecure way. Operating system kernels—and all
setuid-root applications—are not likely to be bug-free in
the near future. (A related discussion may be found in
Section 6.5.1.)

6.5 Applications
Although two applications, NFS and instant messeng-
ing, are proposed by Kennell and Jamieson, we argue
that neither would work well with the Genuinity test pro-
posed, because of two main flaws: first, the cost of im-
plementing the scheme is high in a heterogeneous envi-
ronment, and second, the inconvenience to the user is too
high in a widely distributed, intermittently-connected
network.

6.5.1 NFS
The first example given in the original Genuinity paper
is that an NFS server would like to serve only trusted
clients. In the example, Alice the administrator wants
to make sure that Mallory does not corrupt Bob’s data
by misconfiguring an NFS client. The true origin of
the problem is the lack of authentication by the NFSv3
server itself; it relies entirely on each client’s authen-
tication, and transitively, on the reliability of the client
kernels and configuration files. A good solution to this
problem would fix the protocol, by using NFSv4, an
NFS proxy, an authenticating file system, or a system
like Kerberos. NFSv4, which has provisions for user au-
thentication, obviates the need for Genuinity; the trusted

clients merely served as reliable user authenticators.
Unfortunately, the Genuinity test does not really solve

the problem. Why? The Genuinity test cannot distin-
guish two machines that are physically identical and run
the same kernel. As any system administrator knows,
there are myriad possible configurations and misconfig-
urations that have nothing to do with the kernel or pro-
cessor. In this case, Mallory could either subvert Bob’s
NFS client or buy an identical machine, install the same
kernel, and add himself as a user with Bob’s user id.
Since the user id is the only thing NFS uses to authenti-
cate filesystem operations over the network once the par-
tition has been mounted, Mallory can impersonate Bob
completely. This requires a change to system configura-
tion files (i.e., /etc/passwd), not the kernel. The bug
is in the NFS protocol, not the kernel.

The Genuinity test is not designed to address the user-
authentication problem. The Genuinity test does nothing
to verify the identity of a user specifically, and the scope
of its testing—verifying the operating system kernel—is
not enough preclude malicious user behavior. Just be-
cause a machine is running a specific kernel on a specific
processor does not mean its user will not misbehave.
Further, even though the Genuinity test allows the en-
tity to establish a session key with the authority, this key
does no good unless applications actually use it. Even
if rewriting applications were trivially easy (for exam-
ple, IP applications could run transparently over IPSec),
it does not make sense to go through so much work—
running a Genuinity test at boot time and disallowing
kernel and driver updates—for so little assurance about
the identity of the entity.

6.5.2 AIM
The second example mentioned in the original Genuinity
paper is that the AOL Instant Messenger service would
like to serve only AIM clients, not clones. The Gen-
uinity test requires the entity (AIM client) to be in con-
stant contact with the authority. The interval of con-
tact must be less than that required to, say, perform a
suspend-to-disk operation in order to recover the ses-
sion key. On a machine with a small amount of RAM,
that interval might be on the order of seconds. On
wide-area networks, interruptions in point-to-point ser-
vice on this scale are not uncommon for a variety of rea-
sons [LTWW93]. It does not seem plausible to ask a
user to reboot her machine in order to use AIM after a
temporary network glitch.

6.5.3 Set-top game boxes
Although the two applications discussed in the origi-
nal paper are unlikely to be best served by Genuinity, a
more plausible application is preventing cheating in mul-
tiplayer console games. In this scenario, Sony (maker of

the Playstation) or Microsoft (maker of the Xbox) would
use Genuinity to verify that the game software running
on a client was authentic and not a version modified to
allow cheating. This is a good scenario for the authority,
since it needs to deal with only one type of hardware,
specifically one that it designed. Even in the absence of
our substitution attack (Section 4.1), Genuinity is vul-
nerable to larger scale proxy attacks (Section 7.2).

7 Genuinity-like schemes and attacks
We have described two types of attacks against this im-
plementation of Genuinity: one type against the check-
sum primitive, and one type against the key agreement
protocol. In this section we describe general attacks
against any scheme like Genuinity, where

1. The authority has no prior information other than
the hardware and software of the entity, and

2. The entity does not have tamper-proof or tamper-
resistant hardware.

7.1 Key recovery using commonly used
hardware

Clearly, the Genuinity primitive is not of much use if the
negotiated session key is compromised after the test has
completed. Since the key is not stored in special tamper-
proof hardware, it is vulnerable to recovery by several
methods. Many of these, which are cheap and practical,
are noted by Kennell and Jamieson, but this does not
mitigate the possibility of attack by those routes. Multi-
processor machines or any bus-mastering I/O card may
be used to read the key off the system bus. This attack is
significant because multiprocessor machines are cheap
and easily available. Although the Genuinity primitive
takes pains to keep the key on the processor, Intel x86
machines have a small number of nameable general-
purpose registers and it is unlikely that one could be ded-
icated to the key. It is not clear where the key would be
stored while executing user programs that did not avoid
use of a reserved register. It is very inexpensive to de-
sign an I/O card that simply watches the system bus for
the key to be transferred to main memory.

7.2 Proxy attacks: an economic argument
As we have seen, by design the authority has no particu-
lar computational advantage over a client or anyone else
when it comes to computing correct checksums. Cou-
ple this with the fact that key recovery is easy in the
presence of even slightly specialized hardware or mul-
tiprocessors, and it becomes clear that large-scale abuse
is possible. Let us take the example of the game con-
sole service provider, which we may fairly say is a best
case for Genuinity—the hardware and software are both
controlled by the authority and users do not have as easy

access to the hardware. In order to prevent cheating, the
authority must ensure that only authorized binaries are
executed. The authority must make a considerable in-
vestment in hardware to compute checksums from mil-
lions of users. However, this investment must cost suf-
ficiently little that profit margins on a $50 or $60 game
are not eroded; let us say conservatively that it costs no
more than $0.50 per user per month. Now there is the op-
portunity for an adversary, say in a country without strict
enforcement of cyberlaws, to set up a “cheating service.”
For $2 per month, a user can receive a CD with a cheat-
enabled version of any game and a software update that,
when a Genuinity test is invoked, redirects the messages
to a special cheat server. The cheat server can either use
specialized hardware to do fast emulation, or can run the
software on the actual hardware with a small hack for
key recovery. It then forwards back all the correct mes-
sages and, ultimately, the session key. The authority will
be fooled, since network latency is explicitly considered
to be unimportant on the time scale of the test.

7.3 A recent system: SWATT
More recently, the SWATT system [SPvDK04] of Se-
shadri et al. has attempted to perform software-only
attestation on embedded devices with limited architec-
tures by computing a checksum over the device’s mem-
ory. Its purpose is to verify the memory contents of the
device, not to establish a key for future use. Like Gen-
uinity, SWATT relies on a hardware-specific checksum
function, but also requires network isolation of the de-
vice being verified. As a result of restricting the domain
(for example, the CPU performance and memory sys-
tem performance must be precisely predictable), they are
able to provide stronger security guarantees than Gen-
uinity. SWATT requires that the device can only commu-
nicate with the verifier in order to prevent proxy attacks,
which may hinder its applicability to general wireless
devices. In addition, it is not clear that the dynamic state
of a device (e.g., variable values such as sensor data or
a phone’s address book) can be verified usefully since
an attacker might modify the contents of this memory
and then remove the malicious code. Nevertheless, for
wired devices with predictable state, SWATT provides a
very high-probability guarantee of memory integrity at
the time of attestation.

The authors of SWATT also present an attack on Gen-
uinity. The attacker can flip the most significant bit
of any bytes in memory and still compute the correct
checksum with 50% probability.

8 Conclusion
Genuinity is a system for verifying hardware and soft-
ware of a remote desktop client without trusted hard-
ware. We presented an attack that breaks the Genuinity

system using only software techniques. We could not
obtain the original Genuinity code, so we made a best
effort approximation of Genuinity in our attacks. Our
substitution attacks and DoS attacks defeat Genuinity in
its current form. Genuinity could deter the attacks with
countermeasures, but this suggests an arms race. There
is no reason to assume Genuinity can win it. Kennell
and Jamieson have failed to demonstrate that their sys-
tem is practical, even for the applications in the origi-
nal paper. These criticisms are not specific to Genuinity
but apply to any system that uses side effect information
to authenticate software. Therefore, we strongly believe
that trusted hardware is necessary for practical, secure
remote client authentication.

Acknowledgements
We thank Rob Johnson for feedback and suggestions on
the substitution attack. We also thank Naveen Sastry and
David Wagner for many invaluable comments and in-
sights. David Wagner also suggested the set-top game
box application. Finally, we would like to thank the
anonymous referees for several useful suggestions and
corrections.

References
[DoD85] DoD. Standard department of defense

trusted computer system evaluation crite-
ria, December 1985.

[DS01] Drew Dean and Adam Stubblefield. Us-
ing client puzzles to protect TLS. In 10th
USENIX Security Symposium. USENIX
Association, 2001.

[Gro01] Trusted Computing Group. Trusted com-
puting group main specification, v1.1.
Technical report, Trusted Computing
Group, 2001.

[Hua03] Andrew Huang. Hacking the Xbox: an
introduction to reverse engineering. No
Starch Press, July 2003.

[Int03] Intel. Model specific registers and
functions. http://www.intel.com/ de-
sign/intarch/techinfo/Pentium/mdelregs.htm,
2003.

[KJ03] Rick Kennell and Leah H. Jamieson. Estab-
lishing the genuinity of remote computer
systems. In 12th USENIX Security Sym-
posium, pages 295–310. USENIX Associ-
ation, 2003.

[LTWW93] Will E. Leland, Murad S. Taqq, Walter
Willinger, and Daniel V. Wilson. On
the self-similar nature of Ethernet traffic.

In Deepinder P. Sidhu, editor, ACM SIG-
COMM, pages 183–193, San Francisco,
California, 1993.

[Mic] Microsoft. Next genera-
tion secure computing base.
http://www.microsoft.com/resources.

[Nec97] George C. Necula. Proof-carrying code.
In Conference Record of POPL ’97: The
24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages,
pages 106–119, Paris, France, jan 1997.

[NIS04] NIST. The common criteria and evaluation
scheme. http://niap.nist.gov/cc-scheme/,
2004.

[SPvDK04] Arvind Seshadri, Adrian Perrig, Leendert
van Doorn, and Pradeep Khosla. Swatt:
Software-based attestation for embedded
devices. In IEEE Symposium on Security
and Privacy, 2004.

[SPWA99] S. Smith, R. Perez, S. Weingart, and
V. Austel. Validating a high-performance,
programmable secure coprocessor. In
22nd National Information Systems Secu-
rity Conference, October 1999.

[YT95] Bennett Yee and J. D. Tygar. Secure co-
processors in electronic commerce applica-
tions. In First USENIX Workshop on Elec-
tronic Commerce, pages 155–170, 1995.

