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Strongbox: A System for
Self-Securing Programs

J. D. Tygar and Bennet S. Yee

7.1 Introduction

Security is a pressing problem for distributed systems. Distributed systems
exchange data among a variety of users over a variety of sites, which may
be geographically separated. A user who stores important data on processor A
must trust not just processor A but also the processors B� C� D� . . . with which
A communicates. The distributed security problem is difficult, and few major
distributed systems attempt to address it. In fact, conventional approaches to
computer security are so complex that they actually discourage designers from
trying to build a secure distributed system: A software engineer who wishes to
build a secure distributed data application finds that he or she must depend on the
security of a distributed database which depends on the security of a distributed
file system which depends on the security of a distributed operating system
kernel, etc. Under this traditional design approach, security necessarily becomes
a secondary concern since just making an (unsecure) distributed system work
efficiently is a daunting task. And adding security raises the difficulty by an order
of magnitude.

We propose a new model of security: self-securing programs. Self-securing
programs are designed to run in environments where only a minimal number of
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assumptions are made about the security of the operating system kernel. Self-
securing program run in a client-server model, use advanced authentication and
fingerprinting techniques, and can guarrantee extremely high levels of security
without requiring a secure kernel. We have built a system for constructing
self-securing programs called Strongbox. We have made the use of Strongbox
relatively transparent to programmers who write multithreaded servers. This
allows existing servers to be retrofitted with security and allows programmers to
separate security from other concerns. Strongbox provides facilities to protect the
privacy of data and the integrity of data from alteration, and to implement quickly
a variety of policy decisions about data protection.

Strongbox depends on two types of assumptions: one concerning the privacy
of a process’s memory and one concerning cryptographic security. Clearly
protected memory is requisite for security --- otherwise an adversary could ‘‘spy’’
on a computation and break security. The cryptographic assumption is used to
implement a new zero-knowledge authentication protocol. This protocol performs
substantially better than previous authentication protocols, and includes facilities
for key exchange. (Our method is faster than previously proposed zero-knowledge
authentication protocols such as [11]. Moreover, our method can be proven not
to leak any information about the authentication keys we use --- this stands in
contrast to authentication protocols such as Needham and Schroeder’s method
[23, 24].) Finally, our method of demonstrating that the security of our protocol
differs from those suggested by Burrows, Abadi, and Needham [6] in that our
proof technique does not suffer from the type of drawbacks noted in [15].

The current version of Strongbox does not yet address several secondary
concerns including traffic analysis of data message exchange, communication
by adjusting the use of system/network resources (the covert channel problem),
or the availability of system components (the denial of service problem). Our
future work will focus on these concerns, and some preliminary thoughts toward
these problems are discussed in Section 8.8. However, Strongbox can be used in
conjunction with any solution to these secondary concerns.

This chapter begins by discussing our goals for Strongbox --- both functional
and performance goals. In Section 8.2 we discuss the basic computational model
that we assume for our system. In Section 8.3 we give a high level description of
the methods used by Strongbox. Sections 8.4 and 8.5 present an overview of the
architecture used in implementations that are built on top of Camelot, a distributed
transaction system, and Mach, a UNIX-compatible distributed operating system,
respectively. (More information about the Camelot implementation is given in
[41].) In Section 8.6, we give performance figures and code size for these
algorithms, and discuss issues of bootstrapping Strongbox. In Section 8.7 we give
full descriptions of our new algorithms, and efficient implementation techniques
for those algorithms.
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7.1.1 Our Goals

The primary functional goals of Strongbox are to guarantee the integrity and
privacy of data handled by it. Section 8.3 shows that the architecture of Strongbox
protects data from modification and guarantees that data messages are protected
by end-to-end encryption. In Section 8.7 we show that Strongbox’s fingerprinting
and authentication algorithms do not leak information. An additional functional
goal of Strongbox is to provide programmers with a security library that can be
easily used in a server or client. We do not expect programmers to master the
subtleties of a delicate protection mechanism. We have structured our interface so
that converting an existing client/server to be secure requires only a few simple
modifications to the program text.

Security is typically expensive. It is not uncommon for secure versions
of operating systems to run an order of magnitude slower than their insecure
counterparts. We view this as completely unacceptable for real applications; we
demand that the overhead for security, amortized over all computations, should
use no more than 5% of the processor cycles, excluding encryption. We have
worked hard to make our security routines extremely fast, and our performance
figures are in Section 8.6.

Another measure of the effectiveness of security code is the size of the code.
The smaller the code is, the less likely it is to contain errors and the easier it is
to verify, whether by formal or other methods. Since our library isolates simple
points of communication, we believe that we have met those goals.

7.2 Statement of Model

When designing a security system, it is important to keep the system model in
mind. Strongbox is intended to be used within the client-server model where
client programs running on the behalf of users invoke operations within servers
using interprocess communication (IPC). In Strongbox, we restrict client/server
interactions to remote procedure calls (RPCs) --- access is controlled by servers
at this level. It is necessary to make some assumptions about the rest of
the system when building secure facilities. For example, if the system design
assumes an insecure communication mechanism, then communication security
must be provided by other means, such as cryptography, and one must make
the assumption that the cryptosystem used can not be compromised by attackers.
Since cryptosystems can always be broken by nondeterministic agents (who can
simply guess the cleartext and the key and verify that the encryption function
holds), if we adopt the practice of considering operations in P as tractable and
operations in NP - P as intractable, then showing a secure cryptosystem exists is
equivalent to showing P is different from NP, a well known open (and difficult)
problem.
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In building a security system, it is necessary to make some assumptions. We
believe that our assumptions are the minimal ones needed to provide security. We
need to make a complexity assumption that some problem, such as factoring large
integers or inverting the data encryption standard (DES), is intractable. We use this
assumption in our authentication, key exchange, and encryption algorithms. (It is
important to note that for our authentication algorithm, this weak assumption will
allow us to authenticate processes while guaranteeing that no bits of information
are leaked to either party or to an eavesdropper.) We also need to assume that our
base operating system supports protected memory, including contents of virtual
memory stored on a disk,1 since without this assumption no privacy is possible
between processes on a single host because no process can have secrets. In
addition, we need assumptions about physical security; for example, we assume
that the local host is physically secure, that it is configured properly so that there
are no security holes outside of Strongbox’s domain, i.e., the terminal lines from
the user are not tapped, the central processing unit (CPU) and display are not
bugged to leak information, etc. We do not, however, make any assumptions about
the security of the network --- we assume that an adversary can eavesdrop on
messages, replay messages, inject his or her own messages, and prevent messages
from being delivered. Since servers that do not use Strongbox are not offered
any protection, we assume that application programs use our protection scheme
uniformly. We assume that our algorithms were implemented without error, and
that the compiler produced correct object code for them.

The current version of Strongbox does not address issues of denial of service,
covert channel analysis, or traffic analysis of messages (information revealed in
the pattern of message transfers). Although we have not explicitly addressed
these problems, we conjecture that they may be solved by extensions to the self-
securing paradigm. For example, the Camelot transaction system [10] supports
fault tolerance, and the Camelot version of Strongbox makes that fault tolerance
secure. We believe that these fault-tolerant facilities might be extended to the
security case to support protection against denial of service attacks. (For some
theoretical contributions to these issues, see [17, 28].)

A key scenario for Strongbox is the loosely coupled distributed systems
case. In these systems, covert channel analysis may be considerably simplified
by storing files and running processes of a single security level on each host.
Interactions between security levels will take place over the communication
network, which is a simpler object to examine for covert channels than an
operating system on a single host. In addition, secure memory for processes will
be easier to satisfy if all user-applications on the node are at the same level of
security. This is a natural mode of operation for a loosely coupled network of

1 If we are implementing Strongbox on a paging operating system, we must depend on the
security of the paging system. In some cases we can assist the security of the data stored
by the pager by using a pager that encrypts as it pages.
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workstations.
We are continuing to explore approaches such as these in ongoing research.

The current security code is publicly available from the authors. We will continue
to examine its performance in large applications.

7.3 Conceptual Solution

At the core of Strongbox are new routines for key exchange, authentication,
and fingerprinting. End-to-end private key encryption protects the privacy and
integrityof messages passed among clients, servers, and other system components.
Because we do not make assumptions about the security of communications, it is
necessary to encrypt our RPC messages; the encryption mechanism, however, is
modular and can be easily omitted when appropriate. In particular, in situations
where communication is secure or involves no sensitive data --- but where
operations on sensitive data may be requested --- only authentication is required.
Key-exchange is performed using a public key system equivalent to deciding
quadratic residuosity. In addition, Strongbox provides an authentication system
that provides us with support for any user-supplied access control/authorization
system. This authentication system differs from previous authentication and key
exchange protocols such as Needham-Shroeder [24] in that it can be proved to
not leak any information that would allow eavesdroppers to masquerade as either
party. The authentication algorithm is based on the idea of proving identity by
having the authenticator prove that he or she has the solution to an authentication
puzzle without revealing the solution itself. It is superior to the algorithm described
in [11] because it provides a level of security superexponential on the size of the
puzzle.

Integrity of data or program text files is checked in Strongbox by using
provably secure cryptographic checksums. These checksums, called fingerprints,
are computed prior to storing data in the file system and are checked when the
system retrieves data.

Below, we will first talk about Strongbox’s operation by describing its
system components and their interactions with a client when that client is started.
Next, we will describe what happens when Strongbox is booted.

7.3.1 Strongbox System Components

On each host, two servers are essential to Strongbox’s operation. The first is
the White Pages server which maintains the database containing Strongbox key
exchange information and authentication puzzles. The second server is the secure
loader. The secure loader is a user-level program that uses operating system
primitives to load the run-time image of Strongbox servers and clients after
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verifying their fingerprints. Instead of using a loader within the kernel after
verifying the fingerprint, Strongbox must first read the program text into memory,
verify the fingerprint, and load the new task with the text from memory. This
procedure avoids the possibility of an attacker changing the executable file just
after the fingerprint check but before the kernel can load the task. Exhibit 8.1
shows the relationships among the various system components in the Camelot
implementation of Strongbox, which is discussed in Section 8.4. The same
relationships hold for these servers in the vanilla implementation of Strongbox,
modulo the absence of Camelot. (This scenario is discussed in Section 8.5).

We now consider the typical interactions of a secure client with secure
Strongbox servers that it uses, the White Pages server, and the secure loader. To
start the first secure client running, a user requests the secure loader to start a new
client. The user authenticates his or her identity to the secure loader by a standard
password mechanism. After the authentication completes, the secure loader will
create a new task, load the task’s memory with the fingerprint-checked program
text, initialize the task’s registers, and start the task running. The secure loader
gives the task a seed for its psuedo-random number generator and the puzzle
solution for a new, randomly created authentication puzzle.

After the secure client is bootstrapped, it runs on the behalf of the user
and interacts with the user using its standard input and standard output streams.
The White Pages server WP maintains a database of servers and client names
along with their key exchange information and authentication puzzles. When the
client C needs to make an RPC with a secure server S, it must first contact a
WP to obtain S’s published key exchange information and authentication puzzles.
If S is on the local host, the client will ask the local WP local, and it will not
need to authenticate the identity of WPlocal (we assume that the local host was
booted securely; see Section 8.3.2). The more interesting case occurs when S
is on a remote host. In that case, we may either run an authentication with the
remote White Pages server WPremote directly and obtain S’s puzzle, or we may
ask our WPlocal; WPlocal will forward our request to WPremote after performing the
appropriate key exchange and authentication steps to establish a secure channel
and verify WPremote’s identity. The standard routine supplied by Strongbox uses
the latter method. After C obtains S’s key exchange data and authentication
puzzle, C invokes the key exchange routine to establish a secure channel, perform
an authentication, and obtain an authentication token from S. The authentication
is symmetrical:2 the client is assured that it is communicating with the right
server, and the server is assured of the identity of the client (and that of the user)
and may control access based on that identity. It is only after C has obtained an
authentication token that it can call the remote procedures at S; the authentication

2 The server, symmetrically, asks a White Pages server for C’s puzzle, and two rounds of
authentication, one proving the identity of C to S and the other proving the identity of S to
C, are run in a single, integrated protocol.
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EXHIBIT 7.1
Strongbox architecture --- Camelot implementation. In this figure, we show
how Strongbox interacts with other system components. Each of the large
boxes denotes a computer. The client, server, and White Pages server are
shown as running on different machines; this is not a requirement of
Strongbox, however, so they may all reside on the same computer. The lines
among the client, server, and White Pages server boxes denote
communication that may be visible on the communication network. Within
each computer, the smaller boxes denote the major software components: the
Mach operating system kernel, the Security Library which is used by every
secure server or client, the White Pages server, the secure loader, and the
secure clients and servers. The curved arrows denote the fingerprint
operations which verify that none of the files have been corrupted.
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token is used in all subsequent requests to this server, therefore depending on the
life time of the client, the cost of key exchange, and the cost of authentication,
already low, may be amortized over many RPC operations.

7.3.2 Booting Strongbox

To run securely, Strongbox must be booted in a secure fashion. We assume that
the Strongbox host computer is physically secure and that a trusted operator
boots the machine. How do we validate the integrity of the host? The same
solution that we use to verify the integrity of data files and program text when
Strongbox is running is applied to the operating system kernel and system utilities:
simply maintain a list of fingerprints for the system components. We verify their
correctness at boot time, and a copy of the fingerprint code is placed in the
boot read-only memory (ROM) to deter tampering. The fingerprint list is kept
secret, and the operator must enter a decryption key to initiate the boot sequence.
Along with using encryption, the list of fingerprints of the system modules may
itself be fingerprinted; if desired, each host may use a distinct encryption key
and a different system fingerprint key. Since the puzzle for the White Pages
server is common to all White Pages servers, the solution, which is compiled
into the binary of the server, must also be kept secret via encryption. Note that
the plaintext version of the binary need not ever reside in the file system: we can
decrypt entirely in main memory and then run the server directly.

Currently, a single puzzle/solution pair is used for all White Pages servers.
To avoid the problem of a single untrustworthy site causing problems, multiple
puzzle/solution pairs may be employed. One approach to doing this is outlined in
[17].

7.4 Camelot Implementation

We initially implemented a Strongbox interface to work with the Camelot
distributed transaction system. Camelot extends the usual programming model
[4] to include the transaction abstraction for persistent memory objects. Before
we describe our implementation for Camelot, we first give an overview of Mach
and Camelot.

7.4.1 Mach/Camelot Overview

The Mach operating system [1, 35] provides the basic services needed to
support the client-server model for which Strongbox was designed. Mach is
upward compatible with 4.3 BSD UNIX, but provides additional primitives for
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supporting multithreaded processes (called tasks), location transparent intertask
communication, and efficient virtual memory. Mach is also relatively machine-
independent, running on a variety of uniprocessors and multiprocessors including
the IBM RT, Sun 3, Sun 4, DEC VAX and Pmax, Encore Multimax, and the
NeXT workstation. The work reported in this chapter was done primarily on
Mach running on RT/APCs and MicroVAXs.

The Mach Interface Generator (MIG) is Mach’s RPC stub generator [19].
MIG accepts a syntactic specification for procedure headers (written in a Pascal-
like syntax), and generates libraries for calling and dispatching RPCs. These
libraries link into the executable image of both clients and servers. The client
library contain RPC procedure stubs that copy input arguments into a Mach
message, send the message to the server, and unpack the reply message contents
into output arguments. The server library contains a demultiplexing routine that,
given a message sent by some client, figures out from the message ID in the header
the RPC to which the message corresponds, unpacks the arguments appropriately,
and calls the service routine with the unpacked arguments. When the service
routine completes, the demux routine packs the output arguments into a reply
message and sends that message back to the client.

Another detail of Mach IPC that is important to Strongbox is the message
format. Each IPC message has a fixed header followed by a variable data part.
The variable data part of a message is an array of data descriptors and data. The
data descriptor is a structure containing the size and type of the next datum. MIG
places arguments in the message in the order of declaration, so by constraining
the RPC declaration we can be sure of the argument’s location in a message. In
particular, this is how Strongbox extracts the authentication token from generic
RPC requests.

The Camelot distributed transaction facility is layered on Mach and MIG.
It provides mechanisms for constructing reliable distributed programs that access
shared data [9, 38]. Camelot simplifies the handling of network, processor, and
software failures; performs synchronization of concurrent programs; manages
storage resources; and reduces the complexity of invoking and building shared
databases.

The most important abstraction provided by Camelot is the transaction,
a collection of operations bracketed by two markers: BEGIN TRANSACTION
and END TRANSACTION. Transactions provide three properties that reduce the
amount of attention that a programmer must pay to concurrency issues and failures
[14, 39]:

Failure atomicity. Failure atomicity ensures that if a transaction’s work is
interrupted by a failure, any partially completed results will be undone. A
programmer or user can then attempt the work again by reissuing the same
or a similar transaction.

Permanence. If a transaction completes successfully, the results of its
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operations will never be lost, except in the event of catastrophes that damage
stable storage. Systems can be designed to reduce the risk of catastrophes to
any desired probability.

Serializability. Transactions are allowed to execute concurrently, but the re-
sults will be the same as if the transactions executed serially. Serializability
ensures that concurrently executing transactions cannot observe inconsis-
tencies. Programmers are therefore free to cause temporary inconsistencies
during the execution of a transaction knowing that their partial modifications
will never be visible.

The properties of transactional memory is exploited in the Camelot version
of Strongbox to simplify the structure of the servers.

7.4.2 Camelot Strongbox

Camelot entities are divided into two classes, clients and servers; typically,
clients initiate operations at servers via RPCs, though a server may act as a
client of a second server as well. Instead of using the MIG-generated RPC stub
routines directly, the RPCs were performed by wrapping the RPC request in a
C preprocessor macro --- Camelot does not allow ‘‘raw’’ RPCs because it must
keep track of transaction IDs, etc. Since the IPC among Camelot entities are
so highly constrained, we were able to engineer the integration of Strongbox so
that modifying an insecure Camelot server or client is as painless as possible.
Using Strongbox usually involves changing the macro invocations to use special
Strongbox-style macros that manage both Strongbox bookkeeping and Camelot
bookkeeping.

In nonsecure Camelot, the SERVER CALL macros handle the transactional
bookkeeping for invokinga RPC for both servers and clients. Servers never receive
RPC requests directly; rather, a Camelot supplied routine receives the incoming
request and perform some preprocessing prior to invoking the MIG generated
demultiplexing routine. In secure Camelot, instead of using the SERVER CALL
macro for performing RPCs, we require that the SEC SERVER CALL macro be
used instead.

The secure RPC macro hides a bit more detail than the nonsecure version
--- in addition to the extra input parameters already hidden by SERVER CALL
(e.g., the current transaction ID), it hides another argument, an authentication
token,3 which will also be sent along with the ‘‘normal’’ RPC parameters. Prior
to performing the actual RPC request, the secure macro performs Strongbox

3 These tokens are capabilities that could be transferred among programs. We do not make
any distinction between authentication tokens and capabilities: in particular, a successful
authentication for group membership just results in a new capability in addition to the old
one rather than a modification to the data entry associated with the old token. See [18].
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bookkeeping such as looking up the token associated with the server. If there
are no valid tokens or if the RPC request is denied for some other reason (e.g.,
the token expired or the server restarted), the macro automatically runs the
key exchange and authentication protocols to obtain a valid token. By adding
cached tokens to the RPC parameters and obtaining new tokens when needed
automatically, the token management is completely transparent to the application.
Hiding all this activity from the interface is desirable for simplifying the task of
converting existing non-secure Camelot applications to use Strongbox. Another
Strongbox macro, SEC CAP SERVER CALL, allows the programmer to supply a
capability token as a parameter of the RPC, thus enabling the program to explicitly
manage its tokens.

On the server side, we hide Strongbox-related activities by providing a
cover routine for demultiplexing incoming RPC requests. To handle the RPC
demultiplexing, Camelot servers normally gives the name of the demux procedure
generated by MIG to the Camelot library via the START SERVER macro.
Strongbox provides the SEC START SERVER macro to be used in lieu of
START SERVER macro, which substitutes in a special predemux procedure that
implements access control. Since all initial segments of Strongbox RPC message
bodies contain a capability token and all RPC headers contain the RPC request
ID, we easily provide coarse-grained access control at the RPC entry-point level.
The access control routine consults a simple, per-server authorization database
(implemented using Camelot’s recoverable memory objects) implemented with
a library provided with the Camelot version of Strongbox to decide whether to
grant access to a particular RPC routine. If access is denied, the access controller
would just abort the transaction; if access is permitted, the access controller
invokes the normal demux procedure. By performing access control before the
service routines are invoked, we eliminate the need to change the sources for
the service routines. This method provides only coarse-grained access control; a
simpler mechanism is used in the vanilla version of Strongbox described in the
next section.

Why are the authentication tokens unforgeable? When the network is inse-
cure, the Strongbox RPC library encrypts all traffic between clients and servers.
The encryption used is based on using a cryptographically secure pseudo-random
number generator (see [5]) as a source of random bits for a one-time pad,4 so
multiple encryptions of the same data results in different ciphertext: replaying an
encrypted token from a message will not aid in spoofing subsequent messages.
There is a caveat: the message header and the type information for the data fields
cannot be encrypted because they are interpreted by the kernel, and a small integer
(part of the token) must remain visible within the message. The integer identifies

4 We designed a pseudo-random number generator that is based on the assumption that
inverting DES is intractable. Our generator has considerable performance advantages over
the generator described in [5].
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the secure channel to which the message belongs so Strongbox will decrypt the
message with the appropriate key. This means that, in its current form, RPC
communication is not protected against simple traffic analysis.

The authorization database that the access control routine consults is main-
tained within the server. In particular, Camelot’s recoverable memory is used,
simplifying the issues of saving and restoring this database. Because the memory
is transactional, once we commit modifications to the authorization database, the
change is permanent --- the server may be arbitrarily crashed and restarted without
fear of damage to the database. We assume that the underlying Camelot core
system servers are secure, and that the transactional logging of the values of the
recoverable memory is performed in a secure fashion.5 When a secure Camelot
server initially starts up, it performs a once-only transaction that initializes its
recoverable memory. At this time, the Strongbox server initializes its autho-
rization database to allow an administrative user to access Strongbox-provided
authorization handling RPCs. All other access permissions are derived from the
administrative user.

7.5 Vanilla Implementation

The ‘‘vanilla’’ implementation of Strongbox runs directly on Mach. There are
a few differences between the Camelot implementation of Strongbox and the
vanilla implementation. This section will describe these differences.

The overall architectures of the two implementations are the same. The main
observation is that, without the transactional abstraction provided by Camelot,
writing large servers become more complex. Depending on system reliability, a
server has several strategies to prevent corrupting its database if the node crashes:
it may simply checkpoint its database periodically; it may maintain its database
entirely on disk, using main memory as a write-through cache; or it may log
changes prior to modifying values so it can reconstruct its database from the log.
Furthermore, Strongbox places no trust in the filesystem; if a server is to share
that assumption, it must encrypt its database when writing it out to disk. For this
purpose, Strongbox provides a routine for using DES in block chaining mode to
encrypt contiguous blocks of memory.

In the vanilla version of Strongbox, the access control is no longer at the
RPC level. We simply provide a standardized interface between the authentication
routines and any authorization mechanism (perhaps provided as library) that the
programmer wishes to use. All Strongbox servers’ service routines take an
authentication token as an argument --- as before, its placement in the argument
list is constrained so that encryption can be used to establish a secure channel.

5 The Camelot log must be encrypted so no data can be leaked and fingerprinted so no data
can be modified, or the logging must be to a secure device.
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Unlike the Camelot implementation, however, access is not controlled at the RPC
entry point, and the programmer must explicitly control access.

Typically the programmer implements access control by placing queries
to authorization routines at appropriate places within the service routine with
the authentication token and name of the operation/suboperation as parameters.
The authentication routines provide the ability to map from the authentication
tokens to client/user names as strings or internal ID numbers, so the authorization
routines can use these identifiers as indices into its access control database. Finer
grained protection such as that needed by a file server may need authorization
routines that allow object identifiers as well. Where the access control matrix for
the previous case was indexed by the tuple user� operation, here it is indexed by
the triplet user � operation� object.

7.6 Performance and Implementation Issues

This section gives timing figures for our implementations of the authentication
algorithm and fingerprinting algorithm described in Section 8.3. Our timing
figures are for an IBM RT/APC, which is a reduced instruction set computer
(RISC) running at 4 MIPS.

An IBM RT/APC requires 105 milliseconds (mS) to perform (one-way)
authentication in addition to the RPC overhead. To perform the authentication, the
client invokes two RPCs. The overhead for performing an RPC is approximately
35 mS [40]. We have a software implementation of DES that works at a rate of
220 encryptions per second.

An IBM RT/APC achieves a fingerprinting rate of over 880 KBytes/sec.
The fingerprinting routine uses a 65536 (2 16) entry table of precomputed partial
residues to achieve this speed. Another implementation which uses a 256-
entry table achieves a fingerprinting rate of 710 Kbytes/sec. The residue table
initialization algorithm is described in Section 8.7.2. For the large table, the time
required is approximately 1 sec; the time for the small table is negligible.

The trade-off in data size and speed between the two versions of fingerprint
implementation indicates using the smaller version for most cases. The large
table version is useful where the same irreducible polynomial is used for a large
amount of data; the small version wins out when the irreducible is changed often,
or where there are tight memory requirements.

While not a requirement when implementing security code, smaller code
size is desirable. When the code is smaller, the system is easier to verify and is
less likely to contain bugs. The key exchange routines consists of 80 lines of C
code, not including comments. The authentication routines consists of 75 lines of
C code, not including comments. Both the key exchange and the authentication
code are written on top of a library of routines for calculating with arbitrarily large
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integers. The fingerprinting code consists of 211 lines of C code, not including
comments. Our total core routines are relatively small: 366 lines of C code.

7.7 Algorithms and Analysis

This section discusses and analyzes the key algorithms in Strongbox. Warning:
The material in this section is substantially more difficult than the rest of the
chapter. A casual reader may wish to skip it. The notation used is standard
from number theory and algebra (groups, rings, and fields). Primes needed in the
key exchange algorithm, the authentication algorithm, and the two merged key
exchange/authentication algorithms may be generated using known probabilistic
algorithms such as the one given by Rabin in [32].

7.7.1 Description of Algorithms

Before we launch into the description of our algorithms, let us define some terms
that will be used throughout this section.

A number M is said to be a Blum modulus when M = P � Q, and P, Q are
primes of the form 4k + 3. Moduli of this form are said to have the Blum property.
As we will see later, Blum moduli have special number theoretic properties that
we will make use of in our protocols.

A value is said to be a nonce value if it is randomly selected from a set S and
is used once in a run of a protocol. The nonce values that we will use are usually
selected from a ring Z�M, where M is a Blum modulus.6

Key Exchange. End-to-end encryption of communication channels is mandatory
when the security of the channels is suspect. To do this efficiently, we use private-
key encryption coupled with a public-key encryption algorithm used for key
exchange. We will first describe the public-key algorithm.

What properties do we need in a public-key encryption algorithm? Certainly,
we want assurances that inverting the ciphertext without knowing the key is
difficult. To show that inverting the ciphertext is difficult, often we show that
breaking a cryptosystem is equivalent to solving some other problem that we
believe to be hard. For example, Rabin showed that his encryption algorithm is
equivalent to factoring large composite numbers, which number theorists believe
to be difficult [27]. Unfortunately, Rabin’s system is brittle, i.e., if the agents
can be made to decrypt ciphertext chosen by an attacker, it is easy to subvert
the system, divulging the secret keys. The RSA encryption algorithm [36], while

6 Z
�

n denotes integers modulo n relatively prime to n considered as a group with
multiplication as the group operator.
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believed to be strong, has not been proven secure. Chor [7] showed that if an
attacker can guess a single bit of the plaintext when given the ciphertext with an
accuracy of more than 1�2 + �, then the attacker can invert the entire message.
Depending on your point of view, this could be interpreted to mean either that
RSA is strong in that not a single bit of the plaintext is leaked, or that RSA is
weak in that all it takes is one chink in its armor to break it. The public-key
cryptosystem used in Strongbox is based on the problem of deciding quadratic
residuosity, another well-known problem in number theory that is believed to be
difficult.

When a connection is initially established between a client and a server, the
two exchange a secret, randomly generated DES key using a public key encryption
system. Because private key encryption is relatively cheap, we use the DES key
to encrypt all other traffic between the client and the server.

Strongbox’s public key system works as follows: All entities in the system
publish via the White Pages server their moduli, Mi, where Mi is a Blum moduli.
The factorization of Mi, of course, is known only to the entity corresponding to
Mi and is kept secret.

Now, observe that Blum moduli have the property that the multiplicative
group Z�Mi

has �1 as a quadratic nonresidue. To see this, let L(a�p) denote the
Legendre symbol, which is defined as

L(a�p) =

�
1 if a is a quadratic residue, i.e., if �x : x2 � a (mod p)
�1 otherwise

where p is prime and a � Z
�

p . Now, we are going to use two important
identities involving the Legendre symbol: 7

L(�1�p) = �1(p�1)�2 (7.1)

L(m � n�p) = L(m�p) � L(n�p) (7.2)

When p = 4k + 3, from (8.1) we have L(�1�p) = �12k+1 = �1, so �1 is a
quadratic nonresidue. Further, it is easy to randomly generate random quadratic
residues and nonresidues: simply chose a r � Z

�
Mi

randomly 8 and compute
r2 mod ZMi . If we want a quadratic residue, use r2 mod Mi; if we want a quadratic
nonresidue, use �r2 mod Mi.

We have established that, given n = p � q where both p and q are of the form
4k + 3, it is easy to generate random quadratic residues and quadratic nonresidues.
Next, we need to note another property of quadratic residues that will enable us to
decode messages. The important property of the Legendre symbol is that it can be

7See [25] for a list of identities involving the Legendre symbol.
8 We can actually just chose r � ZMi and not bother to check that r � Z�

Mi
. If r �� Z�Mi

, this
means that GCD(Mi� r) �= 1 and we’ve just found a factor of Mi. Since factoring is difficult,
this is an highly improbable event.
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efficiently computed using a simple algorithm similar to the Euclidean algorithm
for computing the gcd. Note that this likewise holds for the generalization of
the Legendre symbol, the Jacobi symbol, defined by J(n�m) =

Q
i L(n�pi) where

m =
Q

i pi, where the pi’s are the prime factors of m. The value of the Jacobi
symbol can be efficiently calculated without knowing the factorization of the
numbers.

The following approach was described in [13]. Suppose a client wants
to establish a connection to the server corresponding to M i. The client first
randomly choses a DES key k, which will be sent to the server using the
public key system. The client then decomposes the message into a sequence
of single bits, b0�b1� . . . �bm. Now, for each bit of the message bj, we compute
xj � �1bjr2

j (mod Mi) where rj are random numbers (nonce values). The
receiver i can compute bj = L(xj�Pi) to decode the bit stream since he or she knows
the factorization of Mi. Note that while the Jacobi symbol, the generalization of
the Legendre symbol, can be quickly computed without knowing the factorization
of Mi, it does not aid the attacker. We see from

J(�r2�Mi) = J(�1�Mi)J(r2�Mi)
= J(�1�Pi)J(�1�Qi)J(r2�Mi)
= �1 � �1 � J(r2�Mi)
= J(r2�Mi)
= 1

that quadratic nonresidues formed as residues modulo Mi of �r2 will also have 1
as the value of the Jacobi symbol.9

When receiver has decoded the bit sequence bj and reconstructed the message
mi, he installs mi as the key for DES encryption of the communication channel.
From this point on, DES is used to encrypt all Strongbox managed RPC traffic
between the client and the server.

Authentication. Whether or not our communication channels are secure against
eavesdropping or tampering, some form of authentication is needed to verify the
identity of the party with whom we are establishing communication. Even if our
physical network links are secure, we still need to use authentication: to look
up the communication ports of remote servers, we must ask a nameserver on a
remote, untrusted machine. Since we make no assumptions about the network
name servers, even the identity of a remote host is suspect. Thus on top of
the existing Mach nameserver, Strongbox provides a White Pages server that
maintains authentication information (in addition to key exchange moduli when

9 Some cryptographic protocols, such as RSA, leak information through the Jacobi symbol.
In RSA, plaintext and corresponding ciphertext always have the same value for their Jacobi
symbols. If only a limited number of messages or message formats are used, attackers can
easily gather statistical information on the distribution of messages.
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applicable) and is itself an authenticated agent. For the purposes of this discussion,
the role of the White Pages server is to serve as a repository of authentication
puzzles. Authentication is based on having the authenticator prove that he or she
can solve the published puzzle without revealing the solution.

The best available protocols for authenticationall rely on a crucial observation
made by Michael Rabin in [27]: if one can extract square roots modulo n where
n = p � q, p and q primes, then one can factor n. This theorem has led the way
to practical zero-knowledge authentication protocols. Two important examples
of practical zero-knowledge protocols include an unpublished protocol first
developed in 1987 by Michael Rabin [31], and a protocol developed by Feige,
Fiat, and Shamir (the FFS protocol) [11]. Between the FFS and Rabin’s protocols,
Rabin’s method is much stronger because it provides a superexponential security
factor. In contrast to Needham and Schroeder’s authentication protocol[24], both
of these zero-knowledge authentication protocols require no central authentication
server and thus there is no single point of failure that would cripple the entire
system. Strongbox uses an authentication protocol which is a modified version of
Rabin’s method. Like Rabin’s protocol, the Strongbox protocol has the important
properties of being decentralized and having a superexponential security factor.

What do we mean when we say the authentication is zero-knowledge? By this
we mean that the entire authentication session may be open --- eavesdroppers may
listen to the entire authentication exchange, and nobody will gain any information
at all that would enable them to later masquerade as the authenticator; furthermore,
both ends of the protocol may be simulated by any entity even though they have
no knowledge of the secrets known only to the authenticator. We will see how
this is possible in Section 8.7.2.

Let’s see how Strongbox authentication works. After establishing a secure
communication channel with the remote entity, we query the White Pages server
for the corresponding authentication puzzle. These authentication puzzles are
randomly generated and can be solved only by their owners who knows their
secret solutions. In the protocol, however, the remote entity is not asked to exhibit
a solution to their puzzles, but rather is asked to show a solution to a randomized
version of their puzzle. Our puzzles are again based on quadratic residuosity ---
this time not on deciding residuosity but on actually finding square roots.

Whenever a new entity is created, an authentication puzzle/solution pair is
created for it in an initial, once-only preparatory step --- the puzzle is published
in the local White Pages server, and the solution is given to the new task. The
puzzle consists of a modulus Mi = pi � qi and the vector

�Vi = (vi�1� vi�2� . . . � vi�n�1� vi�n)

where pi and qi are primes, and each vi�j is a quadratic residue in Z
�
Mi

. The
authentication modulus is distinct from the key exchange modulus; in our
authentication algorithm, it is not necessary for anyone to know the factors p i and
qi, and in fact a single modulus can be used for all authentication puzzles. The
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secret solution is the vector

�Si = (si�1� si�2� . . . � si�n�1� si�n)

where si�j are roots of the equations x2 � 1�vi�j (mod Mi). Generating a new
solution/puzzle pair is simple: we choose random si�j � ZMi to form the solution
vector, and then element-wise square and invert �Si modulo Mi to form the puzzle
�V.

Suppose a challenger C wants to authenticate A’s identity. C first randomly
choses a boolean vector �E � f0�1gn:

�E = (e1� e2� . . . � en�1� en)

where �E��E = b n
2c, and � � Sn a permutation.10 We can represent � as a number �

from 0 to n!� 1 which represents elements of Sn under a canonical numbering.11

The pair (�E, �) is the challenge that C will use to query A. Now, C encodes
�E and � as follows:

�C = (c1� c2� . . . � cn+dlog(n!)e)

where

ci =

�
�1ei t2

i mod Mpub if 1 � i � n
�1�i t2

i mod Mpub otherwise

where �i denotes the ith bit of � and ti are nonce values from Z
�
Mpub

, and Mpub is the
Blum modulus that is used by all entities in this initial round, i.e. M pub = PpubQpub,
where Ppub � Qpub � 3 (mod 4). The values of Ppub and Qpub are secret and
may be forgotten after Mpub was generated.

C sends the encoded challenge �C to A.
When A receives �C, A computes the nonce vector

�R = (r1� r2� . . . � rn�1� rn)

where rj are randomly chosen from Z
�
Mi

, and the vector

�X = (x1� x2� . . . � xn�1� xn)

where xj � r2
j (mod Mi). The authenticator sends �X, called the puzzle random-

izer, to the challenger C, keeping the value of �R secret. As we will see in Section
8.7.2, �X is used to randomize the puzzle in order to keep the solution from being

10�E � �E denotes the dot product of �E with itself. Sn denotes the symmetric group of n
elements.
11 Note that this numbering provides a way to randomly choose�: since� requires log(n!)
bits to represent, we can simply generate dlog(n!)e random bits and use it as a number
from 0 to 2dlog(n!)e � 1. If the number is greater than n! � 1, we try again. This procedure
terminates in an expected two tries, so on average we expend 2dlog(n!)e random bits.
Other approaches are given in [21, 8].
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revealed.
C responds to the puzzle randomizer with �T = (t1� t2� . . . � tn�1� tn) of nonce

values used to compute �C. Using �T, A reconstructs (�E� �).
In response to the decoded challenge, A replies with

�Y = (y1� y2� . . . � yn�1� yn)

where yj � r�(j) � s
ej

i�j (mod Mi). �Y is the response. To verify, the challenger
checks that �j : x�(j) � y2

j � vej

i�j (mod Mi) holds.

Authentication and Secret Agreement. Instead of running key exchange and
authentication as separate steps, we have a merged protocol that performs secret
agreement and authentication at the same time. The protocol performs secret
agreement rather than key exchange: after the protocol completes, both parties
will share a secret, but neither party in the protocol can control the final value of
this secret. This merged protocol has the advantage of eliminating an RPC, but
requires that the authentication security parameter n (the puzzle size) be at least
2m, where m is the number of bits in a session key. We do not use this protocol
in our current version of Strongbox since we only need a much weaker level of
security than the n = 2m level. Our merged protocol goes as follows:

As in the normal key exchange protocol, each entity i in the system calculate
a Blum modulus Mi = PiQi, with Pi and Qi primes of the form 4k + 3. i keeps the
values of Pi and Qi secret and publishes Mi. i also generates a random puzzle by
first generating the desired solution vector

�Si = (si�1� si�2� � � � � si�n)

where the elements of �Si are computed by si�j = z2
i�j, where zi�j a random number

from Z
�
Mi

. Then, i publishes the puzzle vector

�Vi = (vi�1� vi�2� � � � � vi�n)

with vi�j = 1�s2
i�j. With both Mi and Vi are published, i is ready to authenticate and

exchange keys.
When the challenger C wishes to verify A’s identity and obtain a session

key from A, first C chooses a challenge (�E� �) as before, with �E � f0�1gn such
that �E � �E = bn

2 c, and permutation � � Sn. Just as in the previous authentication

protocol, C encodes �E and �

�C = (c1� c2� . . . � cn+dlog(n!)e)

where

cj =

�
�1ej t2

j mod Mpub if 1 � i � n
�1�j t2

j mod Mpub otherwise

where � is the canoninical numbering of � � Sn, �j denotes the jth bit of �, tj is
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a nonce value from Z
�
Mpub

, and Mpub is a Blum modulus. C sends A the encoded

challenge �C. Let �T denote the vector of nonce values used to generate �C.
A computes a puzzle randomizer �R

�R = (r1� r2� . . . � rn�1� rn)

by randomly choosing the nonce vector

�W = (w1�w2� . . . �wn�1�wn)

The values wj are chosen from Z
�
MaMc

, where Ma is the published modulus of

A and Mc is the published modulus of C. The value of �R is obtained by setting
rj = w2

j mod ZMaMc . Next, A computes the puzzle randomizer �X from �R as before,

setting xj = r2
j mod ZMaMc , and sends �X to C.

Now, C reveals the challenge (�E� �) by sending A the vector �T; in response,
A sends �Y with

yj = �1bj � r�(j) � s
ej

a�j mod (MaM
1�ej
c )

where bj is a random bit.
To verify A’s identity, C checks that

�j: x�(j) = y2
j vej

a�j mod Ma

holds. There are dn
2 e usable key bits transferred, and they correspond to those

bj for which ej = 0. To extract bj, C computes the Legendre symbol L(yj�Pc) to
determine whether yj is a quadratic residue. If yj is a quadratic residue, then bj = 0;
otherwise, bj = 1.

Practical Authentication and Secret Agreement. In this section, we present an-
other protocol for simultaneous authentication and secret agreement that also
requires two rounds of interaction but requires many fewer random bits. Further-
more, the message sizes are smaller, thus making this protocol more practical.
This protocol strikes the best balance between performance and security, and is
highly appropriate for use in security systems such as Strongbox.

Each agent A who wishes to participate in the protocol generates a modulus
Ma with secret prime factors Pa and Qa. Each agent also generates a vector of
secret numbers

�Sa = (sa�1� sa�2� � � � � sa�n)

where sa�i � Z
�
Ma

. From this �Sa, A computes

�Va = (va�1� va�2� � � � � va�n)

where va�i = 1�s4
a�i. Published for all to use is a modulus Mpub; the two prime

factors of Mpub, Ppub and Qpub, are forgotten.
Now, suppose a challenger C wishes to verify the identity of an authenticator
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A. Assume the parties have published their moduli Mc and Ma, respectively, and
that C’s puzzle vector �V has also been published. First, C chooses a bit vector

�E = (e1� e2� � � � � en)

where �E ��E = bn
2 c, and a permutation � � Sn. The pair (�E� �) is the challenge that

C will use later in authentication. Let � =
� n
b n

2 c

�
, the number of possible vectors �E.

Encode both as two numbers using mappings f :f �Eg � Z� and g: Sn � Zn!. Let
E = g(�) � � + f ( �E), the combined encoding for the two parts of the challenge,12

and let C = E2 mod Mpub. The value C is used to commit C’s challenge to A. C
sends C to A.

In response, A generates a puzzle randomizer by choosing

�R = (r1� r2� � � � � rn)

where each ri is a nonce value chosen from ZMaMc .A creates the puzzle randomizer
vector �X from this by setting

�X = (x1� x2� � � � � xn)

where xi = r4
i . A sends �X to C. C will have to recover some of the values of

�R in order for the protocol to work. These values will become the agreed upon
secret used as private keys. C will recover exactly those ri where ei = 0. There are
exactly d n

2e such values. Let those i such that ei = 0 be the set I.
When C receives the puzzle randomizer, C replies by revealing the challenge

by sending E to A.
A verifies that this E encodes the challenge that corresponds to the challenge

commitment value C by checking that C = E2 mod Mpub. If the encoding is
correct, C extract the challenge tuple (�E� �), and computes

�Y = (y1� y2� � � � � yn)

where yi = r2
�(i)s

2ei
i mod Mei

a M1�ei
c .

Now A composes a special vector �W. The ith entry of this vector will be the
pair

(wi�Eui (wi))

where i � I, ui = r�(i), wi is a nonce value, and Ek is an element of a family F of
hash functions. A sends �Y and �W to C.

C verifies that

�i: y2
i vei

i = x�(i) mod Mei
a M1�ei

c

If each yi passes this test, C then examines the values of yi for which ei = 0:

12 If jEj �� jMpubj, extra random pad bits may be necessary.
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since

yi = r2
�(i) mod Mc

and C knows the factorization of Mc, C can extract the four square roots of yi

(mod Mc), one of which was the original r�(i) chosen by C.13 To choose the
proper root of yi, C uses the i-th element of �W. C can try all four square roots of
yi (mod Mc) and see which one gives the value that matches the value sent by
A. This assumes that F is immune from known plaintext attacks. (One class of
functions that could be used as F is a family of encryption functions.)

Fingerprints. Next, we describe the Karp-Rabin fingerprinting algorithm, which
is crucial to Strongbox’s ability to detect attackers or security problems in the
underlying system. The key idea is this: associated with each file --- in particular,
every trusted program generated by trusted editors/compilers/assemblers/linkers/
etc. --- is a fingerprint which, like a normal checksum, detects modifications to
the data. Unlike normal checksums, however, fingerprints are parameterized by
an irreducible polynomial14 and the likelihood of an attacker forging a fingerprint
without knowing the irreducible polynomial is exponentially small on the degree
of the polynomial.

In the current Strongbox implementation, we choose random irreducible
polynomials p from Z2[x] of degree 31 by the algorithm due to Rabin [29, 20, 33].

Here is one way to visualize the fingerprinting operation: We take the
irreducible polynomialp(x), arrange the coefficients from left to right in decreasing
order, i.e., with the x31 term of p(x) at the leftmost position, and scan through the
input bit stream from left to right. If the bit in the input opposite the x 31 term is
set, we exclusive-or p(x) into the bit stream. As we scan down the bit stream all
coefficients to the left of the current position of x 31 term of p(x) will be zeros.
When we reach the end of the bit stream, i.e., the x0 term of p(x) is opposite the
last bit of the input stream, we will have computed f(x) mod p(x) = �(f(x)).

7.7.2 Analysis of Algorithms

Key Exchange. The correspondence between the problem of deciding quadratic
residuosity and the protocol is direct. For a detailed analysis, see [13].

Authentication. What are the chances that a system breaker B could break the
first (unmerged) authentication scheme ? As we stated before, we assume that the

13 Standard algorithms for performing this are [3, 2].
14 A polynomial p(x) � F[x] (F a field) is said to be irreducible if �f (x) � F[x]: f (x) j
p(x)� 0 � deg f � deg p, i.e., the only divisors are p and nonzero elements of F (the units
of F[x]). This is analogous to primality for integers.
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modulus Mi is sufficiently large so that factoring it is impractical. Now, consider
what B must do to pose as A.

Let us first look at a simpler authentication system to gain intuition. Let the
puzzle and the secret solution be v and s where v = 1�s2; the puzzle randomizer
be x = r2 (r known only to the authenticator); the challenge be e � f0�1g; and the
response be y = r � se. All calculations are done modulo M.

We claim that if B could slip through our authentication procedure with
more than 1

2 probability, then B could extract the square roots and thus factor
M, violating our basic assumption. To wit, in order for B to reliably pass the
authentication procedure, he must be able to handle the case where e is either
1 or 0, and thus he would need to know both r and r � s. This means that he
would be able to compute the square root of v, which we know from Rabin [27]
is equivalent to factoring.

What must B do in the full version of the authentication? In order to pass the
challenge, B must know the value of �E. In addition, B must know part of �. In
particular, B does not have to guess all of � but only those values selected by the
1 entries in �E.

Thus, while���f(�E� �):�E � f0�1gn� �E � �E = b n
2c� � � Sng

��� =
� n

n�2

�
n!,

our the security factor (the inverse of the probability of breaking the system) is
slightly smaller. Our authentication system provides, for puzzles of n numbers, a
probability of an attacker breaking the authentication system of

P = 1
( n

n�2)n!� n
2 !

= (n�2)!3

n!2

� ( 2�n
2 )

3
2 ( n

2e )
3n
2

(2�n)( n
e )2n

=
p

2�n e
n
2

2
3
2 (n+1)n

n
2

=
p
� e

n
2

2
3
2

n+1n
n�1

2

(using the Stirling’s approximation of n! � p
2�n( n

e )n) which shows that P is
clearly superexponentially small. By using longer vectors or multiple vectors
(iterating) the security factor can be made arbitrarily high. Note that since the
security factor is superexponential on n, the puzzle size, and only multiplicative
when the protocol is iterated, increasing puzzle size is usually preferable: If n �,
the new size of the puzzle, is 2n, then the probability of successfully breaking the
system becomes
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P� �
p
�2n en

23n+1(2n)n

=
p

2�n en

2
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p
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On the other hand, if we simply run the protocol twice, we would only obtain
P� = P2. Iterating does have one advantage: it makes the selection of the security
factor (1�P) flexible. Using iteration makes it easy for applications at different
security levels to negotiate the desired security of the connection.

How did we arrive at the expression for P? 1�P simply measures the number
of equiprobable random states visible to the attacker. First, note that

�
n

n�2

�
is the

number of different �E where �E � �E = bn
2 c (i.e., the number of 1 bits in �E is b n

2c).
The n!�(n� i)! term gives the number of ways of chosing i objects from n without
replacement, which is what the projection, as specified by the 1 values in �E, of
the permutation � gives us.

Why do we restrict �E to have b n
2c 1 bits? If e = �E � �E could be any value,

then there would be
Pn

k=0

�n
k

�
n!

(n�k)! different states visible to B not all of which

would be equiprobable if �E and � are chosen uniformly from f0�1gn and Sn. In
particular, it can be seen that the state corresponding to e = 0 is most probable.
This weakens the security factor of our algorithm. In the limit case where �E are
all zeros, then our algorithm no longer provides superexponential security.

An important point to note is that our protocol provides superexponential
security only if the moduli remain unfactored. Since there is an exponential time
algorithm for factoring, it is always possible to break our system in the minimum
of the time for factoring and our superexponential bound. Thus we can scale our
protocol in a variety of ways.

The authentication protocol not only provides superexponential security
when the moduli cannot be factored, but is also zero knowledge. The encoded
challenge vector, �C, performs bit commitment, forcing C to choose the challenge
values prior toA choosing the puzzle randomizer. This means that �E and � can not
be a function of �X, and thus the challenger’s side of the protocol can be simulated
by an entity that does not have knowledge of any of the secrets. Any entity S can
simulate both sides of the protocol --- S can choose random �E, �, and, knowing
their values, construct vectors �X� and �Y� that will pass the verification step:

yj = r�(j)� xj = r2
j if ej = 0

yj = r�(j)� xj = r2
j � vi���1(j) if ej = 1

Note that our model differs slightly from the usual model for zero knowledge
interactive proofs in that here both the prover and the verifier are assumed
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to be polynomial time (and that factoring and quadratic residuosity are not in
polynomial time); if the prover is assumed to be infinitely powerful as in the
usual model, the prover can simply factor the moduli used in the bit commitment
phase of our protocol. Other bit commitment protocols may be used instead; e.g.,
we could use a protocol based on the discrete log problem [37] requiring more
multiplications but use fewer random bits.

Merged Authentication and Secret Agreement. Like the first authentication
algorithm, the merged authentication and key exchange algorithm reveals no
information assuming that factoring and deciding quadratic residuosity are in-
tractible.

How does the merged algorithm differ from the original algorithm. The
difference is that we use MaMc as the modulus for the nonce vectors, and we use
quartic residues instead of quadratic residues for the puzzle randomization vector
�X.

No information is leaked. An analysis similar to that done above establishes
this fact. When ej = 1, we know that

yj = �1bj � r�(j) � sa�j mod Ma

= �1bj � w2
�(j) � z2

a�j mod Ma

= �1bj � (w�(j)zA�j)2 mod Ma

so yj looks like the square of a random number, possibly negated, in Z�
Ma

. The
challenger C or an eavesdropper could have generated this without A’s help.
(Note that the reason that this value is computed modulo M a is because sa�j is the
residue modulo Ma of a random square; if we computed yj modulo MaMc, we
would have no guarantees as to whether sa�j would be a quadratic residue.)

When ej = 0, we have

yj = �1bj � r�(j) mod MaMc

= �1bj � w2
�(j) mod MaMc

This is just the square of a random value, possibly negated, in ZMaMc . The
challenger C or any eavesdropper could have generated this without A’s help as
well.

This proves that one atomic round of the authentication leaks no information.
As with the vanilla authentication, the vectors �C and �T provide bit commitment,
forcing the challenge (�E� �) to be independent of �X, thus running the atomic rounds
in parallel rather than in serial has no impact on the proof of zero knowledge.

Might some system breaker B compromise the authentication? To do so, B
must guess the values of �E and � just as in the vanilla authentication protocol.
The probability of somebody breaking the authentication is superexponentially
small as before. (See Section 8.7.2)

The bits of the session key (bj) are transferred only when ej = 0. When ej = 1,
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C cannot determine the quadratic residuosityof the element yj since we assume that
determining quadratic residuosity is intractible without the factorization of M a.
When ej = 0, on the other hand, C can easily determine the quadratic residuosity
of yj by simply evaluating the Legendre symbol L(yj�Pc).

Practical Authentication and Secret Agreement. Assuming that factoring is
intractable, the third ‘‘practical’’ protocol is also zero knowledge. In particular,
breaking this protocol is equivalent to factoring: any system breaker B who has a
strategy that allowsB to masquerade as A can trivially adapt the strategy to factor
the various moduli in the system.

Let us examine how this authentication/secret agreement protocol differs
from the previous one. Instead of using the quadratic residuosity decision problem
to do bit commitment, this protocol uses the Rabin function, removing the
requirement that the moduli have the Blum property. Since we assume that neither
A nor C can factor, neither of them can extract the square root of an arbitrary
number mod Mpub. In particular, A has no way of getting the encoding E from the
commitment value C; the only way A finds out the value of C (and thus the value
of (���E)) is for C to reveal C. The challenge commitment works as before.

The analysis for the authentication properties are identical to that for the
previous protocols, so we omit that here. (See Section 8.7.2.) What about the
zero-knowledge property?

When ej = 1, we know that

yj = r2
�(j) � s2

a�j mod Ma

= (r�(j) � sa�j)2 mod Ma

so yj looks like the square of a random number in Z�
Ma

. The challenger C or an
eavesdropper could have generated this without A’s help. Note that the reason
that this value is computed modulo Ma is because sa�j is the residue modulo Ma of
a random square; if we computed yj modulo MaMc, we would have no guarantees
as to whether sa�j would be a quadratic residue.

When ej = 0, we have

yj = r2
�(j) mod Mc

This is just the square of a random value in Z�Mc
. The challenger C or any

eavesdropper could have generate this without A’s help as well.
In both cases, a simulator S who pretends to be A and is able to control the

coin flips of C can easily produce a run of the protocol where the message traffic
is indistinguishable from that of an actual run. Since S can simulate the protocol
without the secret known only to A, the protocol is zero knowledge.

Fingerprints. Before we analyze the peformance of the fingerprint algorithm,
we will fix some notation. We let p (or p(x)) refer to an irreducible polynomial
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of degree m (where m is prime). We use the symbol � to denote surjective
mappings, and eF to denote the algebraic closure of the field F.

How good is the fingerprint algorithm? Choosing random irreducible poly-
nomials is equivalent to chosing random homomorphisms �:Z 2[x] � GF(2m),
where ker� is the ring generated by the irreducible polynomial p. To be precise,
� identifies the indeterminate x with u, a root of the irreducible polynomial in
the field fZ2. To wit, �:Z2[x] � Z2(u) �= GF(2m). There are exactly (2m � 2)�m
such homomorphisms. To compute the fingerprint of a file, we consider the
contents of the file as a large polynomial in Z2[x]: take the data as a string
of bits bn� bn�1� . . . �b1�b0, and construct the polynomial f(x) =

Pn
i=0 bixi. The

fingerprint is exactly �(f (x)).
Now, f can have at most b n

mc divisors of degree m. Any two distinct
polynomials f 1 and f 2 will have the same residue if f 1 � f 2 � 0 mod p. The
number of polynomial divisors of f 1 � f 2 is at most n�m, so the probability
that a random irreducible polynomial giving the same residue for f 1 and f 2 is

n�m
(2m�2)�m = n�(2m � 2). For a page of memory containing 4 kilobytes of data

(n = 215, or 32 kilobits), and setting m to be 31, this probability is less than
0.002%. Hence we can see that the fingerprint algorithm is an excellent choice as
a cryptographic checksum.

The naive implementation of this algorithm is quite fast, but it is possible
to achieve even faster algorithms by precomputation. Given a fixed p, and a set
of small polynomials, we construct a table T of residues of those polynomials.
We initially describe the algorithm for arbitrary sized p; optimizations specific to
m = deg p = 31 will be described afterward.

Let T be the table of residues of all polynomials of the form g(x) � xm, where
we allow the g to vary over polynomials of degree less than k. In other words,
T gives us the function �(g(x) � xdeg p) where deg g(x) � k. Using T allows us to
examine k bits from the input stream at a time instead of one at a time. View f(x)
now as

f(x) =

d n
k eX

i=0

ai(x)xi�k

where deg ai(x) � k. The algorithm to compute the residue r(x) = f(x) mod p(x)
becomes the code shown in Exhibit 8.2.

If we fix the value m = deg p = 31, we can realize further size-specific
optimizations. We can represent p exactly in a 32-bit word. Furthermore, since
word at a time operations work on 32 bits at a time, by packing the coefficients
as bits in a word we can perform some basic operations on the polynomials as
bit shifts and exclusive-ors: multiplication by x k is a left-shift by k bits; addition
or subtraction of two polynomials is just exclusive-or. Of course, since we are
dealing now with fixed size machine registers, we must take care not to overflow.

In Strongbox, we have two versions of the fingerprinting code, one for k = 8
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r(x) = 0;
for (i = d n

k e; i � 0; --i) f
r�(x) = r(x) � xk + ai(x);
r(x) = r�(x) mod p(x);

g

EXHIBIT 7.2
Fingerprint residue calculation. The operation r�(x) mod p(x) is performed by
decomposing r� into g(x) � xm + h(x), where deg g � k and deg h � m, finding
r��(x) = g(x) � xm mod p(x) from T, and setting r(x) = r��(x) + h(x).

and the other for k = 16, both of which used irreducible polynomials of degree
31. Because we want to read the input stream a full 32-bit word at a time, we
modified the algorithm slightly: instead of T being a table of �(g(x) � x deg p), T
contains �(g(x) � x32); the code above is modified correspondingly. While the
residues �(g(x) � x32) require only 31 bits to represent, T is represented as a
table of machine words with 2k entries. We can uniquely index into the table by
evaluating g(x) at the point x = 2 (this index is just the coefficient bits of g, which
are already stored in a machine word as an integer). If we run the code loop to
perform this operation, we will get a 32-bit result, which represents a polynomial
of degree at most 31. Hence the result of the loop, r(x), is either the residue
R(x) = f (x) mod p(x) or R(x) + p(x), and the following simple computation fixes
up the result:

�(f(x)) =

�
r(u) if deg r(x) � 31
(r� p)(u) otherwise

A particularly elegant implementation is achieved when we set k to be 8 or
16. The code in Exhibit 8.3 illustrates the algorithm for k = 16.

For the case where k = 16, the initialization of T will be time consuming
if the simple brute force method is used. Instead of calculating each of the 216

entries directly, we first compute the table T� for k = 8, size 256, and then T is
bootstrapped from T� in the obvious manner: for each entry in T, we simply use
its index g(x), decompose it into g(x) = ghi(x) � x8 + glo(x) where deg ghi � 8 and
deg glo � 8, and compute T�[T�

hi(ghi) � glo] � T�

lo(ghi) � x8 as the table entry.
If a higher security level is required, multiple fingerprints can be taken on the

same data, or polynomials of higher degree may be used. The speedup techniques
extend well to handle deg p(x) = 61, the next prime15 close to a multiple of
word size, though the number of working registers required (if implementing

15 While the algorithm for finding irreducible polynomials does not require that the degree
be prime, using polynomials of prime degree makes counting irreducibles simpler.
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fp_mem(a,nwords,p,table)
unsigned long *a, p, *table;
int nwords;
{

unsigned long r, rlo, rhi, a_i;
int i;

r = 0;
for = (i = 0; i < nwords; i+{}+) {

a_i = a[i];
rhi = r >> 16;
rlo = (r << 16) ˆ (a_i >> 16);
r = rlo ˆ table[rhi];
rhi = r >> 16;
rlo = (r << 16) ˆ (a_i & ((1 << 16)-1));
r = rlo ˆ table[rhi];

}
if (r >= 1 << 31) r ˆ= p;
return r;

}

EXHIBIT 7.3
Fingerprint calculation (C code). This C code shows how using a precomputed
table of partial residues can speed up fingerprint calculations. Unlike the actual
code within Strongbox, it omits loop unrolling, forces memory to be aligned,
and may perform unnecessary memory references.

on a 32-bit machine) doubles. Our current implementation is largely limited by
the main memory bandwidth on the CPU’s bus for reading the input data and
the table size. Note that the table for k = 8 can easily fit in most modern CPU
memory caches. If we use main memory to store intermediate results, performance
degrades dramatically.

7.8 Future Work

We have shown that the Strongbox system allows one to realize self-securing
programs --- programs that can be run securely in environments that provide only
minimal security. We have provided algorithms that substantially outperform
existing algorithms. We have implemented our system in two different environ-
ments: the distributed transaction system Camelot, and the distributed operating
system Mach.

What directions are next for the theory of self-securing programs? In addition
to considering implementing Strongbox in other environments and putting more
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sophisticated access control mechanisms (such as those suggested in [26, 30]),
we are continuing to consider basic research issues related to self-securing
programs. We are pursuing two possible avenues for the future evolution of
Strongbox: attacking the denial of service problem and using secure coprocessors
in conjunction with Strongbox.

7.8.1 The Denial of Service Problem

Traditionally the concerns of availability and security have been thought to
be contradictory [34]. To see one reason why, consider the use of replication
to provide high availability. When we attempt to to guarantee a distributed
system’s availability the following problem arises: the larger the number of
independently failing components, the smaller the likelihood they will all be
working simultaneously, and the smaller the likelihood the system will be
accessible when needed. This well-known phenomenon is typically addressed by
designing distributed systems to be fault-tolerant, i.e., able to function correctly
in the presence of some number of failures. In particular, the availability of
long-lived data can be enhanced by storing the data redundantly at multiple sites,
a technique commonly known as replication [12, 16].

But this physical distribution of security also makes security more difficult.
When repositories for data are physically distributed it is more difficult to ensure
that each one is physically secure. As the number of sites increases, so does the
number of ways in which the secrecy and integrityof the data can be compromised.

In [17] we have proposed that we describe and analyze several encryption-
based secrecy protocols that, for a given threshold value t, ensure that an adversary
cannot ascertain the object’s state by observing the contents of fewer than t
repositories. We then extend these protocols to guarantee integrity, ensuring that
the object’s state cannot be altered by an adversary who can modify the contents
of fewer than t repositories.

Our method successfully provides full file system security simultaneously
with high availablity. The approach matches well with the Strongbox philosophy.
We would like to develop techniques that provide other availability concerns.

7.8.2 Secure Coprocessors

One assumption we built on was the security of process memory. But building
this into existing systems can be quite difficult: in fact it is often impossible
to even promise the physical security of memory in a distributed system. In
many distributed systems, some degree of physical security is provided by ad
hoc approaches, but no completely satisfactory solution to this problem has been
implemented.
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In Strongbox, we use authentication protocols to provide security. But our
authentication protocols, like all known authentication protocols, use some sort
of key. The possession of this key is accepted as prima facie evidence of identity.
However, it is usually impossible to guarantee the identity of all parties in the
system, because the management of authentication keys makes certain implicit
assumptions about physical security that do not hold in general. To see this,
consider the management of a key used to establish the identity of a client
machine to a server. At some point in the authentication, a key must be located
somewhere. (This key might be formed by combining information from several
different sources.) The key could be stored in the client machine, it could be held
by the user, or it could be stored in some auxiliary device (such as a ‘‘smartcard’’
[22]) used by the user. If the key is stored in the client machine, it becomes
vulnerable to physical attack. If an adversary is able to physically read memory
or to load new system software that will allow him to examine memory locations,
then he can find the value of the key. On the other hand, if the user, or an auxiliary
device held by the user, holds the key then it remains to be seen how the user can
trust the integrity of the client machine. The client machine may be running bogus
software. Even an attempt to take a cryptographic checksum of the client machine
will not prove the trustworthiness of the machine, since it is easy to create a
pair of system software: one trustworthy and used for generating cryptographic
checksums, the other untrustworthy and actually executed on the client machine.

Recently, a new architecture, called a secure coprocessor, has been proposed
[42, 43]. A secure coprocessor is a processor and memory that is tightly coupled
with the client machine, and that is physically protected. The physical protection
can take various forms, but at the least we need a guarantee that the memory
of the secure coprocessor is safe from attack. Any attempt to actually physically
access the memory of the machine results in the memory being erased.

The secure coprocessor consists of a Central Processing Unit (CPU), some
memory, and often some special encryption hardware. The secure coprocessor
is realized as a board that is added on the bus of an existing workstation and
that can work in tandem with the regular processor on that workstation. The
secure coprocessor is protected by ‘‘tamper proof’’ packaging. Any attempt to
penetrate the secure coprocessor will result in a total loss of the secure coprocessor
memory. Thus a key that is stored on a secure coprocessor will remain secret,
unless the secure coprocessor itself reveals the key. Traces of computation on the
secure coprocessor, as well as intermediate values generated by that computation,
also remain secret. New software can be stored on the secure coprocessor only
by using previously established protocols; the secure coprocessor will reject
any unauthorized new software. This architecture raises exciting possibilities for
providing trust in systems.

The question of authenticating identity becomes much simpler, since authen-
tication can be performed, using standard techniques, between the user and the
coprocessor and between the server and the coprocessor. An initial authentication
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key can be stored in the secure coprocessor at the time it is manufactured, and
this key can be used for future authentications. Furthermore, encryption can be
done by the secure coprocessor, obviating a wide variety of key management and
storage concerns. Secure software that is loaded on the client machine can be
trusted by locating particular portions of the secure software on the coprocessor.

Indeed, it seems that secure coprocessor used with a system such as Strongbox
could provide a large number of novel applications in computer security. We
are extremely excited by the possibilites of this new technology and are actively
pursuing new applications in ongoing research.
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