
The TESLA Broadcast Authentication Protocol∗

Adrian Perrig Ran Canetti J. D. Tygar Dawn Song

Abstract

One of the main challenges of securing broad-
cast communication is source authentication, or
enabling receivers of broadcast data to verify
that the received data really originates from the
claimed source and was not modified en route.
This problem is complicated by mutually un-
trusted receivers and unreliable communication
environments where the sender does not retrans-
mit lost packets.

This article presents the TESLA (Timed
Efficient Stream Loss-tolerant Authentication)
broadcast authentication protocol, an efficient
protocol with low communication and computa-
tion overhead, which scales to large numbers of
receivers, and tolerates packet loss. TESLA is
based on loose time synchronization between the
sender and the receivers.

Despite using purely symmetric cryptographic
functions (MAC functions), TESLA achieves
asymmetric properties. We discuss a PKI appli-
cation based purely on TESLA, assuming that all
network nodes are loosely time synchronized.

∗Most of this work was done at UC Berkeley and IBM
Research. The authors can be reached at
adrian+@cs.cmu.edu, canetti@watson.ibm.com,
tygar@cs.berkeley.edu, skyxd@cs.cmu.edu.

1 Introduction

Broadcast communication is gaining popularity
for efficient and large-scale data dissemination.
Examples of broadcast distribution networks are
satellite broadcasts, wireless radio broadcast, or
IP multicast. While many broadcast networks can
efficiently distribute data to multiple receivers,
they often also allow a malicious user to imper-
sonate the sender and inject broadcast packets —
we call this a packet injection attack. (Source-
Specific Multicast (SSM, EXPRESS) is a no-
table exception, and attempts to prevent this at-
tack [17, 40].)

Because malicious packet injection is easy in
many broadcast networks, the receivers want to
ensure that the broadcast packets they receive re-
ally originate from the claimed source. A broad-
cast authentication protocol enables the receivers
to verify that a received packet was really sent by
the claimed sender.

Simply deploying the standard point-to-point
authentication mechanism (i.e., appending a mes-
sage authentication code (MAC) to each packet,
computed using a shared secret key) does not pro-
vide secure broadcast authentication. The prob-
lem is that any receiver with the secret key can
forge data and impersonate the sender. Conse-
quently, it is natural to look for solutions based
on asymmetric cryptography to prevent this at-
tack; a digital signature scheme is an example of
an asymmetric cryptographic protocol. Indeed,
signing each data packet provides secure broad-

2

In CryptoBytes, 5:2, Summer/Fall 2002, pp. 2-13

cast authentication; however, it has high over-
head, both in terms of the time required to sign
and verify, and in terms of the bandwidth. Several
schemes were proposed that mitigate this over-
head by amortizing a single signature over sev-
eral packets, e.g., [14, 25, 28, 33, 38, 39]. How-
ever, none of these schemes is fully satisfactory
in terms of bandwidth overhead, processing time,
scalability, robustness to denial-of-service attacks,
and robustness to packet loss. Even though some
schemes amortize a digital signature over multiple
data packets, a serious denial-of-service attack is
usually possible where an attacker floods the re-
ceiver with bogus packets supposedly containing
a signature. Since signature verification is often
computationally expensive, the receiver is over-
whelmed verifying bogus signatures.

Researchers proposed information-theoretically
secure broadcast authentication mechanisms [10,
11, 12, 13, 20, 34, 35, 36]. These protocols have a
high overhead in large groups with many receivers.

Canetti et al. construct a broadcast authentica-
tion protocol based on k different keys to authen-
ticate every message with k different MAC’s [7].
Every receiver knows m keys and can hence ver-
ify m MAC’s. The keys are distributed in such
a way that no coalition of w receivers can forge a
packet for a specific receiver. The security of their
scheme depends on the assumption that at most
a bounded number (which is on the order of k) of
receivers collude.

Boneh, Durfee, and Franklin show that one can-
not build a compact collusion resistant broad-
cast authentication protocol without relying on
digital signatures or on time synchronization [4].
They show that any secure broadcast authenti-
cation protocol with per-packet overhead slightly
less than the number of receivers can be converted
into a signature scheme.

Another approach to providing broadcast au-
thentication uses only symmetric cryptography,
more specifically on message authentication codes
(MACs), and is based on delayed disclosure of
keys by the sender. This technique was indepen-
dently discovered by Cheung [8] in the context of
authenticating link state routing updates. A re-
lated approach was used in the Guy Fawkes proto-
col for interactive unicast communication [1]. In
the context of multicast streamed data it was pro-
posed by several authors [2, 3, 5, 27, 28].

The main idea of TESLA is that the sender at-
taches to each packet a MAC computed with a key
k known only to itself. The receiver buffers the
received packet without being able to authenti-
cate it. A short while later, the sender discloses k
and the receiver is able to authenticate the packet.
Consequently, a single MAC per packet suffices to
provide broadcast authentication, provided that
the receiver has synchronized its clock with the
sender ahead of time.

This article is an overview of the TESLA broad-
cast authentication protocol. A more detailed de-
scription is in a forthcoming book [30] and in our
earlier publications [27, 28]. A standardization ef-
fort for TESLA is under way in the Multicast Se-
curity (MSEC) working group of the IETF [26].
TESLA is used in a wide variety of applications,
ranging from broadcast authentication in sensor
networks [29], to authentication of messages in
ad hoc network routing protocols [18].

2 Background and Assumptions

TESLA requires that the receivers are loosely time
synchronized with the sender. In this section,
we review a simple protocol to achieve this time
synchronization. TESLA also needs an efficient
mechanism to authenticate keys at the receiver —
we first review one-way chains for this purpose.

3

2.1 One-Way Chains

Many protocols need to commit to a sequence of
random values. For this purpose, we repeatedly
use a one-way hash function to generate a one-way
chain. One-way chains are a widely-used crypto-
graphic primitive. One of the first uses of one-
way chains was for one-time passwords by Lam-
port [21]. Haller later used the same approach for
the S/KEY one-time password system [16]. One-
way chains are also used in many other applica-
tions.

Figure 1 shows the one-way chain construction.
To generate a chain of length � we randomly pick
the last element of the chain s�. We generate the
chain by repeatedly applying a one-way function
F . Finally, s0 is a commitment to the entire one-
way chain, and we can verify any element of the
chain through s0, e.g. to verify that element si

is indeed the element with index i of the hash
chain, we check that F i(si) = s0. More gener-
ally, si commits to sj if i < j (to verify that sj is
part of the chain if we know that si is the ith el-
ement of the chain, we check that F j−i(sj) = si).
We reveal the elements of the chain in this or-
der s0, s1, . . . , s�−1, s�. How can we store this
chain? We can either create it all at once and store
each element of the chain, or we can just store s�

and compute any other element on demand. In
practice, a hybrid approach helps to reduce stor-
age with a small recomputation penalty. Jakobs-
son [19], and Coppersmith and Jakobsson [9] pro-
pose a storage efficient mechanism for one-way
chains: a one-way chain with N elements only
requires log(N) storage and log(N) computation
to access an element.

In TESLA, the elements of the one-way chain
are keys, so we call the chain a one-way key chain.
Furthermore, any key of the one-way key chain
commits to all following keys, so we call such a
key a one-way key chain commitment, or simply
key chain commitment.

s�s�−1s�−2s1s0

F (s�)F (s�−1)F (s2)F (s1)
. . .

Generate

Use / Reveal

Figure 1: One-way chain example. The sender
generates this chain by randomly selecting s� and
repeatedly applying the one-way function F . The
sender then reveals the values in the opposite or-
der.

2.2 Time Synchronization

TESLA does not need the strong time synchro-
nization properties that sophisticated time syn-
chronization protocols provide [22, 24, 37], but
only requires loose time synchronization, and that
the receiver knows an upper bound on the sender’s
local time. We now outline a simple and secure
time synchronization protocol that achieves this
requirement. For simplicity, we assume the clock
drift of both sender and receiver is negligible (oth-
erwise the receiver can periodically resynchronize
the time with the sender). We denote the real
difference between the sender and the receiver’s
time with δ. In loose time synchronization, the
receiver does not need to know the exact δ but
only an upper bound on it, ∆, which we also refer
to as the maximum time synchronization error.

We now describe a simple protocol for time
synchronization, where each receiver performs ex-
plicit time synchronization with the sender. This
approach does not require any extra infrastruc-
ture to perform time synchronization. We present
a simple two-round time synchronization protocol
that satisfies the requirement for TESLA, which
is that the receiver knows an upper bound on the
sender’s clock. Reiter previously describes this
protocol [31, 32].

4

t1

t2

t3 tS

tR

∆

δ

Receiver time Sender time

Figure 2: Direct time synchronization between
the sender and the receiver. The receiver is-
sues a time synchronization request at time tR,
at which time the sender’s clock is at time t1.
The sender responds to the request at its local
time tS . In TESLA, the receiver is only interested
in an upper bound on the sender’s time. When
the receiver has its current time tr, it computes
the upper bound on the current sender’s time as
ts ≤ tr − tR + tS . The real synchronization er-
ror after this protocol is δ. The receiver, however,
does not know the propagation delay of the time
synchronization request packet, so it must assume
that the time synchronization error is ∆ (or the
full round-trip time (RTT)).

Figure 2 shows a sample time synchronization
between the receiver and the sender. In the pro-
tocol, the receiver first records its local time tR
and sends a time synchronization request contain-
ing a nonce to the sender.1 Upon receiving the
time synchronization request, the sender records
its local time tS and replies with a signed response
packet containing tS and the nonce.2

1
The security of this time synchronization protocol re-

lies on the unpredictability of the nonce — if an attacker
could predict the receiver’s nonce, it could send a time
synchronization request to the sender with that nonce, and
replay the response later to the receiver.

2Interestingly, the processing and propagation delay of
the response message does not change δ (assuming that

1. Setup. The sender S has a digital signature
key pair, with the private key K−1

S and the
public key KS . We assume a mechanism that
allows a receiver R to learn the authenticated
public key KS . The receiver chooses a ran-
dom and unpredictable nonce.

2. Protocol steps. Before sending the first mes-
sage, the receiver records its local time tR.

R → S : Nonce

S → R : {Sender time tS,Nonce}K−1
S

To verify the return message, the receiver ver-
ifies the digital signature and checks that the
nonce in the packet equals the nonce it ran-
domly generated. If the message is authentic,
the receiver stores tR and tS . To compute the
upper bound on the sender’s clock at local
time t, the receiver computes t − tR + tS .

Upon receiving the signed response, the receiver
checks the validity of the signature and verifies
that the nonce in the response packet equals the
nonce in the request packet. If all verifications
are successful, the receiver uses tR and tS to com-
pute the upper bound of the sender’s time: when
the receiver has the current time tr, it computes
the upper bound on the current sender’s time as
ts ≤ tr − tR + tS . The real synchronization error
after this protocol is δ, as Figure 2 shows. The
receiver, however, does not know the propagation
delay of the time synchronization request packet,
so it must assume that the time synchronization
error is ∆ (or the full round-trip time (RTT)).

the sender immediately records and replies with the arrival
time of the request packet), since the receiver is only in-
terested in an upper bound on the sender’s clock. If the
receiver were interested in the lower bound on the sender’s
clock, the processing delay and delay of the response mes-
sage would matter. For more details on this refer to the
more detailed time synchronization description [30].

5

A digital signature operation is computation-
ally expensive, and we need to be careful about
denial-of-service attacks in which an attacker
floods the sender with time synchronization re-
quests. Another problem is request implosion: the
sender is overwhelmed with time synchronization
requests from receivers. We address these issues
in our earlier paper [27].

3 The TESLA Broadcast Authentica-
tion Protocol

A viable broadcast authentication protocol has
the following requirements:

• Low computation overhead for generation
and verification of authentication informa-
tion.

• Low communication overhead.

• Limited buffering required for the sender and
the receiver, hence timely authentication for
each individual packet.

• Robustness to packet loss.

• Scales to a large number of receivers.

The TESLA protocol meets all these require-
ments with low cost — and it has the following
special requirements:

• The sender and the receivers must be at least
loosely time-synchronized as outlined in Sec-
tion .

• Either the receiver or the sender must buffer
some messages.

Despite the buffering, TESLA has a low authen-
tication delay. In typical configurations, the au-
thentication delay is on the order of one round-
trip delay between the sender and receiver.

3.1 Sketch of TESLA protocol

We first outline the main ideas behind TESLA.
Broadcast authentication requires a source of
asymmetry, such that the receivers can only ver-
ify the authentication information, but not gener-
ate valid authentication information. TESLA uses
time for asymmetry. We assume that receivers are
all loosely time synchronized with the sender —
up to some time synchronization error ∆, all par-
ties agree on the current time. Here is a sketch of
the basic approach:

• The sender splits up the time into time in-
tervals of uniform duration. Next, the sender
forms a one-way chain of self-authenticating
values, and assigns the values sequentially to
the time intervals (one key per time inter-
val). The one-way chain is used in the re-
verse order of generation, so any value of a
time interval can be used to derive values of
previous time intervals. The sender defines a
disclosure time for one-way chain values, usu-
ally on the order of a few time intervals. The
sender publishes the value after the disclosure
time.

• The sender attaches a MAC to each packet.
The MAC is computed over the contents of
the packet. For each packet, the sender de-
termines the time interval and uses the cor-
responding value from the one-way chain as
a cryptographic key to compute the MAC.
Along with the packet, the sender also sends
the most recent one-way chain value that it
can disclose.

6

• Each receiver that receives the packet per-
forms the following operation. It knows the
schedule for disclosing keys and, since the
clocks are loosely synchronized, can check
that the key used to compute the MAC is still
secret by determining that the sender could
not have yet reached the time interval for dis-
closing it. If the MAC key is still secret, then
the receiver buffers the packet.

• Each receiver also checks that the disclosed
key is correct (using self-authentication and
previously released keys) and then checks the
correctness of the MAC of buffered packets
that were sent in the time interval of the dis-
closed key. If the MAC is correct, the receiver
accepts the packet.

One-way chains have the property that if inter-
mediate values of the one-way chain are lost, they
can be recomputed using later values. So, even
if some disclosed keys are lost, a receiver can re-
cover the key chain and check the correctness of
packets.

The sender distributes a stream of messages
{Mi}, and the sender sends each message Mi in
a network packet Pi along with authentication in-
formation. The broadcast channel may be lossy,
but the sender does not retransmit lost packets.
Despite packet loss, each receiver needs to authen-
ticate all the messages it receives.

We now describe the stages of the basic TESLA
protocol in this order: sender setup, receiver
bootstrap, sender transmission of authenticated
broadcast messages, and receiver authentication
of broadcast messages.

3.2 Sender Setup

TESLA uses self-authenticating one-way chains.
The sender divides the time into uniform intervals
of duration Tint. Time interval 0 will start at time
T0, time interval 1 at time T1 = T0+Tint, etc. The
sender assigns one key from the one-way chain
to each time interval in sequence. The one-way
chain is used in the reverse order of generation, so
any value of a time interval can be used to derive
values of previous time intervals.

The sender determines the length N of the
one-way chain K0,K1, . . . ,KN , and this length
limits the maximum transmission duration be-
fore a new one-way chain must be created.3 The
sender picks a random value for KN . Using a
pseudo-random function f , the sender constructs
the one-way function F : F (k) = fk(0). The
remainder of the chain is computed recursively
using Ki = F (Ki+1). Note that this gives us
Ki = FN−i(KN), so we can compute any value
in the key chain from KN even if we do not have
intermediate values. Each key Ki will be active
in time interval i.

3.3 Bootstrapping Receivers

Before a receiver can authenticate messages with
TESLA, it needs to be loosely time synchronized
with the sender, know the disclosure schedule of
keys, and receive an authenticated key of the one-
way key chain.

Various approaches exist for time synchroniza-
tion [24, 37, 22]. TESLA, however, only requires
loose time synchronization between the sender

3For details on how to handle broadcast streams of
unbounded duration by switching one-way key chains,
see [27]. For this article we assume that chains are suf-
ficiently long for the duration of communication.

7

and the receivers, so a simple algorithm is suf-
ficient. The time synchronization property that
TESLA requires is that each receiver can place
an upper bound of the sender’s local time, as we
discuss in Section .

The sender sends the key disclosure schedule by
transmitting the following information to the re-
ceivers over an authenticated channel (either via
a digitally signed broadcast message, or over uni-
cast with each receiver):

• Time interval schedule: interval duration
Tint, start time Ti and index of interval i,
length of one-way key chain.

• Key disclosure delay d (number of intervals).

• A key commitment to the key chain Ki (i <
j − d where j is the current interval index).

3.4 Broadcasting Authenticated Messages

Each key in the one-way key chain corresponds to
a time interval. Every time a sender broadcasts a
message, it appends a MAC to the message, using
the key corresponding to the current time interval.
The key remains secret for the next d−1 intervals,
so messages sent in interval j effectively disclose
key Kj−d. We call d the key disclosure delay.

As a general rule, using the same key multi-
ple times in different cryptographic operations is
ill-advised — it may lead to cryptographic weak-
nesses. So we do not want to use key Kj both
to derive key Kj−1 and to compute MACs. Us-
ing a pseudo-random function family f ′, we con-
struct the one-way function F ′: F ′(k) = f ′

k(1).
We use F ′ to derive the key to compute the
MAC of messages: K ′

i = F ′(Ki). Figure 3

depicts the one-way key chain construction and
MAC key derivation. To broadcast message Mj

in interval i the sender constructs packet Pj =
{Mj || MAC(K ′

i,Mj) || Ki−d}.

Figure 3 depicts the one-way key chain deriva-
tion, the MAC key derivation, the time intervals,
and some sample packets that the sender broad-
casts.

3.5 Authentication at Receiver

When a sender discloses a key, all parties poten-
tially have access to that key. An adversary can
create a bogus message and forge a MAC using
the disclosed key. So as packets arrive, the re-
ceiver must verify that their MACs are based on
safe keys: a safe key is one that is only known by
the sender, and safe packets or safe messages have
MACs computed with safe keys.

Receivers must discard any packet that is not
safe, because it may have been forged.

We now explain TESLA authentication in de-
tail: A sender sends packet Pj in interval i. When
the receiver receives packet Pj , the receiver can
use the self-authenticating key Ki−d disclosed in
Pj to determine i. It then checks the latest possi-
ble time interval x the sender could currently be
in (based on the loosely synchronized clock). If
x < i+d (recall that d is the key disclosure delay,
or number of intervals that the key disclosure is
delayed), then the packet is safe. The sender has
thus not yet reached the interval where it discloses
key Ki, the key that will verify packet Pj .

The receiver cannot yet verify the authenticity
of packet Pj sent in interval i. Instead, it adds
the triplet (i,Mj ,MAC(K ′

i,Mj)) to a buffer, and
verifies the authenticity after it learns K ′

i.

8

Pj Pj+1 Pj+2 Pj+3 Pj+4 Pj+5 Pj+6

Ki−1 Ki Ki+1 Ki+2

K′
i−1 K′

i K′
i+1 K′

i+2

F (Ki) F (Ki+1) F (Ki+2) F (Ki+3)

F ′(Ki−1) F ′(Ki) F ′(Ki+1) F ′(Ki+2)

Interval i − 1 Interval i Interval i + 1 Interval i + 2 time

Figure 3: At the top of the figure is the one-way key chain (using the one-way function F), and the
derived MAC keys (using the one-way function F ′). Time advances left-to-right, and the time is split
into time intervals of uniform duration. At the bottom of the figure, we can see the packets that the
sender sends in each time interval. For each packet, the sender uses the key that corresponds to the
time interval to compute the MAC of the packet. For example for packet Pj+3, the sender computes a
MAC of the data using key K ′

i+1. Assuming a key disclosure delay of two time intervals (d = 2), packet
Pj+3 would also carry key Ki−1.

What does a receiver do when it receives the
disclosed key Ki? First, it checks whether it al-
ready knows Ki or a later key Kj (j > i). If
Ki is the latest key received to date, the receiver
checks the legitimacy of Ki by verifying, for some
earlier key Kv (v < i) that Kv = F i−v(Ki). The
receiver then computes K ′

i = F ′(Ki) and verifies
the authenticity of packets of interval i, and of
previous intervals if the receiver did not yet re-
ceive the keys for these intervals (the receiver can
derive them from Ki).

Note that the security of TESLA does not rely
on any assumptions on network propagation de-
lay, since each receiver locally determines the
packet safety, i.e. whether the sender disclosed
the corresponding key. However, if the key dis-
closure delay is not much longer than the network
propagation delay, the receivers will find that the
packets are not safe.

4 Discussion

4.1 TESLA Security Considerations

The security of TESLA relies on the following as-
sumptions:

• The receiver’s clock is time synchronized up
to a maximum error of ∆. (We suggest
that because of clock drift, the receiver pe-
riodically re-synchronizes its clock with the
sender.)

• The functions F,F ′ are secure PRFs, and the
function F furthermore provides weak colli-
sion resistance.4

As long as these assumptions are satisfied, it
is computationally intractable for an attacker to
forge a TESLA packet that the receivers will au-
thenticate successfully.

4See our earlier paper for a formal security proof [28].

9

4.2 Achieving Asymmetric Security Proper-
ties with TESLA

Broadcast authentication requires an asymmetric
primitive, which TESLA provides through loosely
synchronized clocks and delayed key disclosure.
TESLA shares many common properties with
asymmetric cryptographic mechanisms. In fact,
assuming that all nodes in a network are time syn-
chronized, any key of the key chain serves as a key
chain commitment and is similar to a public key of
a digital signature: any loosely time synchronized
receiver with an authentic key chain commitment
can authenticate messages, but not forge a mes-
sage with a MAC that receivers would accept.

We can construct an efficient PKI based solely
on TESLA. Consider an environment with n com-
municating nodes. We assume that all nodes are
loosely time synchronized, such that the maxi-
mum clock offset between any two nodes is ∆; and
that all nodes know the authentic key chain com-
mitment and key disclosure schedule of the certi-
fication authority (CA). We further assume that
the CA knows the authentic key chain commit-
ment and key disclosure schedule of every node.
If a node A wants to start authenticating packets
originating from another node B, A can contact
the CA for B’s key chain commitment and key
disclosure schedule, which the CA sends authen-
ticated with its TESLA instance. After the CA
discloses the corresponding key, A can authenti-
cate B’s TESLA parameters and subsequently au-
thenticate B’s packets.

Note that TESLA is not a signature mecha-
nism and does not provide non-repudiation, as
anybody could forge “authentic” TESLA packets
after the key is disclosed. However, in conjunction
with a trusted time stamping mechanism, TESLA
could achieve properties similar to a digital signa-
ture. Consider this setup: all nodes in the network

are loosely time synchronized (as above with an
upper bound on the synchronization error); and
all nodes in the network trust the time stamp-
ing server [6, 15, 23]. The time stamping server
timestamps all TESLA packets it receives. The
time stamping server can broadcast the hooks to
the trust chain authenticated with its TESLA in-
stance. A judge who wants to verify that a sender
sent packet P performs the following operations:

1. Receive the current value of the time stamp-
ing server’s trust chain, ensure that it is safe,
and wait for the TESLA key to authenticate
it.

2. Based on the trust chain value, verify that
packet P is part of the trust chain.

3. Verify that packet P was safe when the time
stamping server received it (not necessary if
the time stamping server only timestamps
safe packets).

4. Retrieve key from the sender and verify it
using the key chain commitment and disclo-
sure schedule recorded by the time stamping
server.

5. Verify that the authenticity of the packet,
which implies that the correct sender must
have generated the packet.

TESLA and a time stamping server can thus
achieve non-repudiation. This example also shows
that the TESLA authentication can also be per-
formed after the key is already disclosed, as long
as the verifier can check that the packet arrived
safely.

10

5 Acknowledgments

We gratefully acknowledge funding support for
this research. This research was sponsored in part
the United States Postal Service (contract USPS
102592-01-Z-0236), by the United States Defense
Advanced Research Projects Agency (contract
N66001-99-2-8913), and by the United States Na-
tional Science Foundation (grants 99-79852 and
01-22599). DARPA Contract N66001-99-2-8913
is under the supervision of the Space and Naval
Warfare Systems Center, San Diego.

The views and conclusions contained in this
document are those of the author and should not
be interpreted as representing official policies, ei-
ther expressed or implied, of the United States
government, of DARPA, NSF, USPS, any of its
agencies.

References

[1] R. Anderson, F. Bergadano, B. Crispo,
J. Lee, C. Manifavas, and R. Needham. A
new family of authentication protocols. ACM
Operating Systems Review, 32(4):9–20, Oc-
tober 1998.

[2] F. Bergadano, D. Cavagnino, and B. Crispo.
Chained stream authentication. In Selected
Areas in Cryptography, 7th Annual Interna-
tional Workshop, SAC 2000, volume 2012 of
Lecture Notes in Computer Science, pages
144–157, August 2000.

[3] F. Bergadano, D. Cavalino, and B. Crispo.
Individual single source authentication on
the mbone. In ICME 2000, Aug 2000.

[4] D. Boneh, G. Durfee, and M. Franklin. Lower
bounds for multicast message authentication.
In Advances in Cryptology — EUROCRYPT

’2001, volume 2045 of Lecture Notes in Com-
puter Science, pages 434–450, 2001.

[5] B. Briscoe. FLAMeS: Fast, Loss-Tolerant
Authentication of Multicast Streams.
Technical report, BT Research, 2000.
http://www.labs.bt.com/people/briscorj/
papers.html.

[6] A. Buldas, P. Laud, H. Lipmaa, and
J. Villemson. Time-stamping with binary
linking schemes. In Advances in Cryptol-
ogy — CRYPTO ’98, volume 1462 of Lecture
Notes in Computer Science, pages 486–501,
1998.

[7] R. Canetti, J. Garay, G. Itkis, D. Miccian-
cio, M. Naor, and B. Pinkas. Multicast se-
curity: A taxonomy and some efficient con-
structions. In INFOCOMM’99, pages 708–
716, March 1999.

[8] S. Cheung. An efficient message authen-
tication scheme for link state routing. In
13th Annual Computer Security Applications
Conference, pages 90–98, 1997.

[9] D. Coppersmith and M. Jakobsson. Almost
optimal hash sequence traversal. In Pro-
ceedings of the Fourth Conference on Finan-
cial Cryptography (FC ’02), Lecture Notes in
Computer Science, 2002.

[10] Y. Desmedt and Y. Frankel. Shared genera-
tion of authenticators and signatures. In Ad-
vances in Cryptology — CRYPTO ’91, vol-
ume 576 of Lecture Notes in Computer Sci-
ence, pages 457–469, 1992.

[11] Y. Desmedt, Y. Frankel, and M. Yung. Multi-
receiver / multi-sender network security: Ef-
ficient authenticated multicast / feedback. In
Proceedings IEEE Infocom ’92, pages 2045–
2054, 1992.

11

[12] Y. Desmedt and M. Yung. Arbitrated un-
conditionally secure authentication can be
unconditionally protected against arbiter’s
attacks. In Advances in Cryptology —
CRYPTO ’90, volume 537 of Lecture Notes
in Computer Science, pages 177–188, 1991.

[13] F. Fujii, W. Kachen, and K. Kurosawa. Com-
binatorial bounds and design of broadcast
authentication. IEICE Transactions, E79-
A(4):502–506, 1996.

[14] R. Gennaro and P. Rohatgi. How to sign dig-
ital streams. In Advances in Cryptology —
CRYPTO ’97, volume 1294 of Lecture Notes
in Computer Science, pages 180–197, 1997.

[15] S. Haber and W. Stornetta. How to time-
stamp a digital document. In Advances in
Cryptology — CRYPTO ’90, volume 537 of
Lecture Notes in Computer Science, pages
437–455, 1991.

[16] N. Haller. The S/Key one-time password
system. In Proceedings of the Symposium
on Network and Distributed Systems Secu-
rity, pages 151–157. Internet Society, Febru-
ary 1994.

[17] H. Holbrook and D. Cheriton. IP multicast
channels: EXPRESS support for large-scale
single-source applications. In Proceedings of
ACM SIGCOMM ’99, September 1999.

[18] Y.-C. Hu, A. Perrig, and D. B. Johnson.
Ariadne: A secure on-demand routing pro-
tocol for ad hoc networks. In Proceedings
of the Eighth ACM International Conference
on Mobile Computing and Networking (Mo-
bicom 2002), September 2002. To appear.

[19] M. Jakobsson. Fractal hash sequence repre-
sentation and traversal. In Proceedings of the
2002 IEEE International Symposium on In-
formation Theory (ISIT ’02), pages 437–444,
July 2002.

[20] K. Kurosawa and S. Obana. Characteriza-
tion of (k,n) multi-receiver authentication.
In Proceedings of the 2nd Australasian Con-
ference on Information Security and Privacy
(ACISP ’97), volume 1270 of Lecture Notes
in Computer Science, pages 205–215, 1997.

[21] L. Lamport. Password authentication with
insecure communication. Communications of
the ACM, 24(11):770–772, November 1981.

[22] L. Lamport and P. Melliar-Smith. Synchro-
nizing clocks in the presence of faults. Jour-
nal of the ACM, 32(1):52–78, 1985.

[23] H. Lipmaa. Secure and Efficient Time-
Stamping Systems. PhD thesis, Department
of Mathematics, University of Tartu, Esto-
nia, April 1999.

[24] D. Mills. Network Time Protocol (version 3)
specification, implementation and analysis.
Internet Request for Comment RFC 1305, In-
ternet Engineering Task Force, March 1992.

[25] S. Miner and J. Staddon. Graph-based au-
thentication of digital streams. In Proceed-
ings of the IEEE Symposium on Research
in Security and Privacy, pages 232–246, May
2001.

[26] Multicast security ietf working group
(msec). http://www.ietf.org/html.charters/
msec-charter.html, 2002.

[27] A. Perrig, R. Canetti, D. Song, and J. D.
Tygar. Efficient and secure source authen-
tication for multicast. In Proceedings of the
Symposium on Network and Distributed Sys-
tems Security (NDSS 2001), pages 35–46. In-
ternet Society, February 2001.

[28] A. Perrig, R. Canetti, J. D. Tygar, and
D. Song. Efficient authentication and signa-
ture of multicast streams over lossy channels.

12

In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 56–
73, May 2000.

[29] A. Perrig, R. Szewczyk, V. Wen, D. Culler,
and J. D. Tygar. SPINS: Security proto-
cols for sensor networks. In Proceedings of
Seventh Annual International Conference on
Mobile Computing and Networks (Mobicom
2001), pages 189–199, 2001.

[30] A. Perrig and J. D. Tygar. Security Protocols
for Broadcast Networks. Kluwer Academic
Publishers, 2002. To appear.

[31] M. Reiter. A security architecture for fault-
tolerant systems. PhD thesis, Department
of Computer Science, Cornell University, Au-
gust 1993.

[32] M. Reiter, K. Birman, and R. van Renesse.
A security architecture for fault-tolerant sys-
tems. ACM Transactions on Computer Sys-
tems, 12(4):340–371, November 1994.

[33] P. Rohatgi. A compact and fast hybrid sig-
nature scheme for multicast packet. In Pro-
ceedings of the 6th ACM Conference on Com-
puter and Communications Security, pages
93–100, November 1999.

[34] R. Safavi-Naini and H. Wang. New results
on multireceiver authentication codes. In Ad-
vances in Cryptology — EUROCRYPT ’98,
volume 1403 of Lecture Notes in Computer
Science, pages 527–541, 1998.

[35] R. Safavi-Naini and H. Wang. Multireceiver
authentication codes: Models, bounds, con-
structions and extensions. Information and
Computation, 151(1/2):148–172, 1999.

[36] G. Simmons. A cartesian product construc-
tion for unconditionally secure authentica-
tion codes that permit arbitration. Journal
of Cryptology, 2(2):77–104, 1990.

[37] B. Simons, J. Lundelius-Welch, and
N. Lynch. An overview of clock syn-
chronization. In B. Simons and A. Spector,
editors, Fault-Tolerant Distributed Com-
puting, number 448 in LNCS, pages 84–96,
1990.

[38] D. Song, D. Zuckerman, and J. D. Tygar.
Expander graphs for digital stream authen-
tication and robust overlay networks. In
Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, pages 258–
270, May 2002.

[39] C. Wong and S. Lam. Digital signatures for
flows and multicasts. In IEEE ICNP ‘98,
1998.

[40] Source-Specific Multicast IETF work-
ing group (SSM). http://www.ietf.org/html.
charters/ssm-charter.html, 2002.

13

